Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
JHEP Rep ; 6(8): 101060, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39183731

RESUMO

Background & Aims: There are no studies investigating the direct effects of elevated xanthine oxidase (XO) on lipid metabolism disorders. Here, we aimed to clarify the role of XO in lipid metabolism in a prospective cohort study and elucidate the underlying mechanisms. Methods: The association between serum XO activity and metabolic associated steatotic liver disease (MASLD) was examined in Cox proportional hazard models in a population-based cohort of 3,358 participants (20-75 years) at baseline. In addition, mouse models were used to investigate the underlying mechanism for the association between overexpression of XO and the lipid metabolism disorders. Results: After an average 5.8 years of follow up, we found elevated serum XO activity was associated with an increased risk of developing MASLD (hazard ratio [HR]: 2.08; 95% CI: 1.44-3.01; p-trend <0.001). Moreover, serum XO activity was significantly associated with serum triglyceride levels (r = 0.68, p <0.001). We demonstrated that hepatic XO expression increased in liver samples from patients with MASLD. Using tissue-specific Xdh knockin mice, we observed rapid lipid metabolism disorders under a high-fat diet rather than a normal chow diet. We found that XO overexpression promotes the absorption of excess dietary fat in the small intestine. Inhibition of XO also significantly reduced the absorption of fat in mice fed a high-fat diet. Conclusions: Our study clarified the association between serum XO activity levels and the development of MASLD in a large population-based prospective cohort study. Furthermore, our mouse models demonstrated that XO overexpression promotes lipid accumulation through mechanisms involving excessive fat absorption by the small intestine. Impact and implications: Using a prospective population-based cohort and various animal models, we have identified novel mechanisms by which xanthine oxidase regulates lipid metabolism. Our findings indicate that xanthine oxidase overexpression promotes lipid accumulation by increasing the absorption of excess dietary fat and possibly facilitating lipid transport in vivo. These results could be important for the development of therapies to treat diseases associated with lipid metabolism disorders.

2.
Talanta ; 280: 126681, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39142128

RESUMO

Mildewed tobacco leaves seriously impact on cigarette product quality and pose a health risk to person. However, early moldy tobacco leaves are hardly found by naked eyes in the workshop. In this work, we self-assemble AuAg nanoalloys on silicon wafers to construct Si/AuAg chips. The headspace-surface enhanced Raman scattering (SERS) protocol is developed to monitor volatile 1,2-dichloro-3-methoxybenzene (2,3-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA) released from postharvest tobacco. Consequently, the visualization of the SERS peak at 1592 cm-1 assigned to ν(CC) after headspace collection for 10 min and the SERS intensity ratio of 1054 and 1035 cm-1 from 2,3-DCA and 2,4,6-TCA less than 0.5 could be used as indicators to predict early moldy tobacco. Additionally, with headspace collection time prolonging to 2 h, a SERS band at 682 cm-1 due to ν(CCl) of 2,4,6-TCA occurs, confirming the mildew of leaves. The headspace-SERS protocol paves a path for rapid and on-site inspection of the quality of tobacco leaves and cigarettes during storage with a portable Raman system.

3.
Sci Data ; 11(1): 773, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003335

RESUMO

Runoff and evapotranspiration (ET) are pivotal constituents of the water, energy, and carbon cycles. This research presents a 5-km monthly gridded runoff and ET dataset for 1998-2017, encompassing seven headwaters of Tibetan Plateau rivers (Yellow, Yangtze, Mekong, Salween, Brahmaputra, Ganges, and Indus) (hereinafter TPRED). The dataset was generated using the advanced cryosphere-hydrology model WEB-DHM, yielding a Nash coefficient ranging from 0.77 to 0.93 when compared to the observed discharges. The findings indicate that TPRED's monthly runoff notably outperforms existing datasets in capturing hydrological patterns, as evidenced by robust metrics such as the correlation coefficient (CC) (0.944-0.995), Bias (-0.68-0.53), and Root Mean Square Error (5.50-15.59 mm). Additionally, TPRED's monthly ET estimates closely align with expected seasonal fluctuations, as reflected by a CC ranging from 0.94 to 0.98 when contrasted with alternative ET products. Furthermore, TPRED's annual values exhibit commendable concordance with operational products across multiple dimensions. Ultimately, the TPRED will have great application on hydrometeorology, carbon transport, water management, hydrological modeling, and sustainable development of water resources.

4.
Plant Physiol Biochem ; 214: 108930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013356

RESUMO

Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.


Assuntos
Reguladores de Crescimento de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Selenioso/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
5.
Artigo em Inglês | MEDLINE | ID: mdl-39010833

RESUMO

Acute pancreatitis, an acute inflammatory injury of the pancreas, lacks a specific treatment. The circulatory protein renalase is produced by the kidney and other tissues and has potent anti-inflammatory and prosurvival properties. Recombinant renalase can reduce the severity of mild cerulein pancreatitis; the activity is contained in a conserved 20 aa renalase site (RP220). Here we investigated the therapeutic effects of renalase on pancreatitis using two clinically relevant models of acute pancreatitis. The ability of peptides containing the RP220 site to reduce injury in a one-day post-ERCP and a two-day severe cerulein-induced in mice was examined. The initial dose of renalase peptides was given either prophylactically (before) or therapeutically (after) the initiation of the disease. Samples were collected to determine early pancreatitis responses (tissue edema, plasma amylase, active zymogens) and later histologic tissue injury and inflammatory changes. In both preclinical models, renalase peptides significantly reduced histologic damage associated with pancreatitis, especially inflammation, necrosis, and overall injury. Quantifying inflammation using specific immunohistochemical markers demonstrated that renalase peptides significantly reduced overall bone marrow-derived inflammation and neutrophils and macrophage populations in both models. In the severe cerulein model, administering a renalase peptide with or without pretreatment significantly reduced injury. Pancreatitis and renalase peptide effects appeared to be the same in female and male mice. These studies suggest renalase peptides that retain the anti-inflammatory and prosurvival properties of recombinant renalase and can reduce the severity of acute pancreatitis and might be attractive candidates for therapeutic development.

6.
Nat Commun ; 15(1): 6472, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085242

RESUMO

While the surface-bulk correspondence has been ubiquitously shown in topological phases, the relationship between surface and bulk in Landau-like phases is much less explored. Theoretical investigations since 1970s for semi-infinite systems have predicted the possibility of the surface order emerging at a higher temperature than the bulk, clearly illustrating a counterintuitive situation and greatly enriching phase transitions. But experimental realizations of this prediction remain missing. Here, we demonstrate the higher-temperature surface and lower-temperature bulk phase transitions in CrSBr, a van der Waals (vdW) layered antiferromagnet. We leverage the surface sensitivity of electric dipole second harmonic generation (SHG) to resolve surface magnetism, the bulk nature of electric quadrupole SHG to probe bulk spin correlations, and their interference to capture the two magnetic domain states. Our density functional theory calculations show the suppression of ferromagnetic-antiferromagnetic competition at the surface is responsible for this enhanced surface magnetism. Our results not only show counterintuitive, richer phase transitions in vdW magnets, but also provide viable ways to enhance magnetism in their 2D form.

7.
Adv Sci (Weinh) ; : e2402048, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961641

RESUMO

Ferro-rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo-FR crystals (i.e., single FR domain). This study explores a cost-effective approach to growing homo-FR helimagnetic RbFe(SO4)2 (RFSO) crystals by lowering the crystal growth temperature below the TFR threshold using the high-pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo-FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally high TFR of ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates.

8.
Org Lett ; 26(27): 5799-5804, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38953705

RESUMO

Herein, we disclose a photoinduced radical cascade cyclization of alkynes with sulfinates via a novel EDA complex for the synthesis of various 3-sulfonylindoles and vinyl sulfone oxindoles, which are crucial motifs in medicinal and biological chemistry. The reaction proceeds under mild, photocatalyst- and transition-metal-free conditions, featuring operational simplicity, broad substrate scope, and easy scalability. Mechanistic studies reveal that the reaction is initiated with a photoinduced intermolecular charge transfer from sulfinates to N-sulfonamides, generating a sulfonyl radical followed by an N-centered radical, thus enabling the cascade cyclization process.

9.
Plant Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924024

RESUMO

Abscisic acid (ABA) signaling is crucial for plant responses to various abiotic stresses. The Arabidopsis (Arabidopsis thaliana) transcription factor ABA INSENSITIVE 5 (ABI5) is a central regulator of ABA signaling. ABI5 BINDING PROTEIN 1 (AFP1) interacts with ABI5 and facilitates its 26S-proteasome-mediated degradation, although the detailed mechanism has remained unclear. Here, we report that an ABA-responsive U-box E3 ubiquitin ligase, PLANT U-BOX 35 (PUB35), physically interacts with AFP1 and ABI5. PUB35 directly ubiquitinated ABI5 in a bacterially reconstituted ubiquitination system and promoted ABI5 protein degradation in vivo. ABI5 degradation was enhanced by AFP1 in response to ABA treatment. Phosphorylation of the T201 and T206 residues in ABI5 disrupted the ABI5-AFP1 interaction and affected the ABI5-PUB35 interaction and PUB35-mediated degradation of ABI5 in vivo. Genetic analysis of seed germination and seedling growth showed that pub35 mutants were hypersensitive to ABA as well as to salinity and osmotic stresses, whereas PUB35 overexpression lines were hyposensitive. Moreover, abi5 was epistatic to pub35, whereas the pub35-2 afp1-1 double mutant showed a similar ABA response to the two single mutants. Together, our results reveal a PUB35-AFP1 module involved in fine-tuning ABA signaling through ubiquitination and 26S-proteasome-mediated degradation of ABI5 during seed germination and seedling growth.

10.
Water Res ; 260: 121940, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885556

RESUMO

Accumulation and subsequent release of nutrients have great potential to trigger algal blooms in lakes and reservoirs. We conducted high vertical resolution (2 m interval) monitoring at ∼monthly intervals over a year for hydrological parameters, Chl-a, ammonium (NH4+), nitrate (NO3-) and different species of phosphorus (P) and manganese (Mn) in a 40-meter-deep subtropical reservoir (Shanmei Reservoir) in Fujian, southern China. In this seasonally stratified reservoir featured with high nutrient loading, the consistent trend in the ratio of dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorus (DIP) between the euphotic zone and the hypolimnion, coupled with its mirrored correlation with Chl-a concentration indicates that upward flux from the hypolimnion affects phytoplankton growth in the euphotic zone. The monthly variation of the depth-integrated multiple species of N and P indicates that during the stratification period in the hypoxic hypolimnion, approximately 80% of the DIP is removed, leading to a remarkable decoupling phenomenon between NH4+ and DIP. This process effectively increases the ratio of DIN to DIP in the hypolimnion, thereby significantly reducing the potential of algal blooms caused by the upward flux. A robust positive linear correlation between iron-manganese bound phosphorus (CBD-P) and particulate Mn was observed during stratification period implying that DIP was scavenged by sediment-released Mn throughout the water column. Vertical profiles during stratification showed that upward diffusion of Mn2+ facilitated the formation of Mn oxide zones near the oxycline. The most significant decrease in DIP inventory occurs when Mn oxide zones migrate either upwards from the bottom or downwards from the oxycline, indicating that the migration of Mn oxides on the vertical profile is a key factor in the decoupling of NH4+and DIP. Our findings underscore the importance of Mn cycling as an underappreciated DIP self-immobilization process in the water column of reservoirs characterized by high nutrient loading. Furthermore, we propose that denitrification and Mn cycling establish a consecutive feedback mechanism, preventing excessive nutrient accumulation in low oxygen bottom water. In the context of global changes, we anticipate a heightened prominence of this feedback mechanism.


Assuntos
Monitoramento Ambiental , Eutrofização , Manganês/análise , Clorofila A/análise , Compostos de Amônio/análise , Nitratos/análise , Fósforo/análise , Lagos/química , China , Zooplâncton , Estações do Ano , Poluição da Água/estatística & dados numéricos
11.
Plant Physiol Biochem ; 213: 108800, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905729

RESUMO

Cadmium (Cd), a toxic metal element, can be absorbed by plants via divalent metal ion transporters, thereby retarding plant growth and posing a threat to human health. Strawberries are popular and economically valuable berry species that are sensitive to soil pollutants, especially Cd. However, the mechanisms underlying Cd stress responses in strawberry plants remain largely unclear. Here, we investigated the physiological and molecular basis of Cd stress responses in strawberry plants using the diploid strawberry 'Yellow Wonder' as a material. The results indicated that Cd stress induced oxidative damage, repressed photosynthetic efficiency, and interfered with the accumulation and redistribution of trace elements. Furthermore, Cd stress reduced the concentrations of indoleacetic acid, trans-zeatin riboside and gibberellic acid while increasing the concentration of abscisic acid, thus altering the phytohormone signaling pathway in strawberry plants. Cd stress also inhibited the expression of genes involved in nitrogen uptake and assimilation while promoting the energy supply for plant survival under Cd toxicity. Moreover, the flavonoid biosynthesis pathway was induced, and the anthocyanin concentration increased, thereby improving the free radical scavenging capacity of strawberry plants under Cd toxicity. Additionally, we identified several transcription factors and functional genes as hub genes based on a weighted gene coexpression network analysis. These results collectively provide a theoretical foundation for strawberry breeding and ensuring agriculture and food safety.


Assuntos
Cádmio , Fragaria , Fragaria/genética , Fragaria/metabolismo , Fragaria/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos
12.
Org Lett ; 26(27): 5652-5656, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38941116

RESUMO

A visible-light-mediated decarboxylative coupling reaction of phenylacetic acid derivatives, featuring sulfur hexafluoride (SF6) as the oxidant, has been developed. This metal-free method allows for the synthesis of a series of bibenzyl derivatives and complex all-carbon skeletons, facilitating efficient utilization and degradation of the greenhouse gas SF6.

13.
Environ Sci Technol ; 58(26): 11625-11636, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38848335

RESUMO

Dissolved organic matter (DOM) exists widely in natural water, which inevitably influences microplastic (MP) photoaging. Nevertheless, the impacts of DOM fractions with diverse molecular structures on MP photoaging remain to be elucidated. This study explored the photoaging mechanisms of polylactic acid (PLA)-MPs and polystyrene (PS)-MPs in the presence of DOM and its subfractions (hydrophobic acid (HPOA), hydrophobic neutral (HPON), and hydrophilic (HPI)). Across DOM fractions, HPI exhibited the highest electron accepting capacity (23 µmol e- (mg C)-1) due to its abundant tannin-like species (36.8%) with carboxylic groups, which facilitated more reactive oxygen species generation (particularly hydroxyl radical), leading to the strongest photoaging rate of two MPs by HPI. However, the sequences of bond cleavage during photoaging of each MPs were not clearly shifted as revealed by two-dimensional infrared correlation spectra. Inconspicuous effects on the extent of PS- and PLA-MPs photoaging were observed for HPOA and HPON, respectively. This was mainly ascribed to the occurrence of inhibitory mechanisms (e.g., light-shielding and quenching effect) counteracting the reactive oxygen species-promoting effects. The findings identified the HPI fraction of DOM for promoting PS- and PLA-MPs photoaging rate and first constructed a link among DOM molecular structures, redox properties, and effects on MP photoaging.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/química , Poliésteres/química , Poluentes Químicos da Água/química
14.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732926

RESUMO

Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.


Assuntos
Envelhecimento , Eletromiografia , Músculo Esquelético , Humanos , Eletromiografia/métodos , Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Adulto , Masculino , Feminino , Idoso , Adulto Jovem , Pessoa de Meia-Idade
15.
Bioresour Technol ; 402: 130785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703956

RESUMO

Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters. Results showed that rice straw significantly enhanced the nitrogen removal efficiency of EFBs, while enriching nitrogen-fixing and denitrifying bacteria (such as Rhizobium, Rubrivivax, and Rhodobacter, etc.). Additionally, during the denitrification process in EFBs, rice straw can release humic acid-like fraction as electron donors to support the metabolic activities of microorganisms, while aquatic macrophytes provide a more diverse range of dissolved organic matters, facilitating a sustainable denitrification process. These findings help to understand the synergistic effect of denitrification processes within wetland ecosystems using agricultural biomass.


Assuntos
Carbono , Desnitrificação , Nitrogênio , Oryza , Águas Residuárias , Águas Residuárias/química , Purificação da Água/métodos , Biomassa , Bactérias/metabolismo , Áreas Alagadas , Biodegradação Ambiental
16.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821596

RESUMO

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Assuntos
Apoptose , Ferroptose , Neoplasias da Próstata , Espécies Reativas de Oxigênio , Humanos , Masculino , Ferroptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piridonas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Pironas
17.
Ren Fail ; 46(1): 2349113, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721900

RESUMO

BACKGROUND: Type 3 cardiorenal syndrome (CRS type 3) triggers acute cardiac injury from acute kidney injury (AKI), raising mortality in AKI patients. We aimed to identify risk factors for CRS type 3 and develop a predictive nomogram. METHODS: In this retrospective study, 805 AKI patients admitted at the Department of Nephrology, Second Hospital of Shanxi Medical University from 1 January 2017, to 31 December 2021, were categorized into a study cohort (406 patients from 2017.1.1-2021.6.30, with 63 CRS type 3 cases) and a validation cohort (126 patients from 1 July 2021 to 31 Dec 2021, with 22 CRS type 3 cases). Risk factors for CRS type 3, identified by logistic regression, informed the construction of a predictive nomogram. Its performance and accuracy were evaluated by the area under the curve (AUC), calibration curve and decision curve analysis, with further validation through a validation cohort. RESULTS: The nomogram included 6 risk factors: age (OR = 1.03; 95%CI = 1.009-1.052; p = 0.006), cardiovascular disease (CVD) history (OR = 2.802; 95%CI = 1.193-6.582; p = 0.018), mean artery pressure (MAP) (OR = 1.033; 95%CI = 1.012-1.054; p = 0.002), hemoglobin (OR = 0.973; 95%CI = 0.96--0.987; p < 0.001), homocysteine (OR = 1.05; 95%CI = 1.03-1.069; p < 0.001), AKI stage [(stage 1: reference), (stage 2: OR = 5.427; 95%CI = 1.781-16.534; p = 0.003), (stage 3: OR = 5.554; 95%CI = 2.234-13.805; p < 0.001)]. The nomogram exhibited excellent predictive performance with an AUC of 0.907 in the study cohort and 0.892 in the validation cohort. Calibration and decision curve analyses upheld its accuracy and clinical utility. CONCLUSIONS: We developed a nomogram predicting CRS type 3 in AKI patients, incorporating 6 risk factors: age, CVD history, MAP, hemoglobin, homocysteine, and AKI stage, enhancing early risk identification and patient management.


Assuntos
Injúria Renal Aguda , Síndrome Cardiorrenal , Nomogramas , Humanos , Feminino , Masculino , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/sangue , Estudos Retrospectivos , Pessoa de Meia-Idade , Fatores de Risco , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/complicações , Síndrome Cardiorrenal/etiologia , Idoso , Medição de Risco/métodos , China/epidemiologia , Modelos Logísticos , Adulto
18.
Biomacromolecules ; 25(6): 3642-3650, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38775327

RESUMO

The preparation of polysaccharide-peptide hydrogels usually involves multiple synthetic steps, thus reducing the effectiveness and practicality of these approaches. Inspired by recent discoveries in aqueous N-carboxyanhydride (NCA) ring-opening polymerization (ROP) and ring-opening polymerization-induced nanogelation, we present an aqueous one-pot strategy to prepare polysaccharide-polypeptide hydrogels. In this study, water-soluble polysaccharide carboxymethyl chitosan is used as the macromolecular initiator to prepare polysaccharide-polypeptide copolymers through the aqueous ROP of NCA. The catalyst-free approach afforded hydrogels with properties that could be controlled by adjusting the type and amount of NCA used, with the elastic modulus ranging from 50 Pa to 18000 Pa. The hydrogen bond-cross-linked hydrogel exhibited self-healing and injectable properties. Morphology characterization revealed that micelles were formed in the early stage of reaction, suggesting that the polymerization follows an aqueous ring-opening polymerization-induced self-assembly (ROPISA) mechanism and that aggregation of micelles during the reaction caused the gelation. Moreover, the hydrogels displayed high swelling ratios (>95% water content), and hemolysis and cytotoxicity experiments demonstrated that the hydrogels had excellent biocompatibility, indicating their potential in medical applications.


Assuntos
Hidrogéis , Hidrogéis/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Polimerização , Quitosana/química , Quitosana/análogos & derivados , Peptídeos/química , Água/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Polissacarídeos/química , Micelas , Animais
19.
Cell Death Discov ; 10(1): 267, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821929

RESUMO

Cervical cancer, significantly affecting women worldwide, often involves treatment with bleomycin, an anticancer agent targeting breast, ovarian, and cervical cancers by generating reactive oxygen species (ROS) to induce cancer cell death. The Peroxiredoxin (PRDX) family, particularly PRDX1 and 2, plays a vital role in maintaining cellular balance by scavenging ROS, thus mitigating the damaging effects of bleomycin-induced mitochondrial and cellular oxidative stress. This process reduces endoplasmic reticulum (ER) stress and prevents cell apoptosis. However, reducing PRDX1 and 2 levels reverses their protective effect, increasing apoptosis. This research highlights the importance of PRDX1 and 2 in cervical cancer treatments with bleomycin, showing their potential to enhance treatment efficacy by managing ROS and ER stress and suggesting a therapeutic strategy for improving outcomes in cervical cancer treatment.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38733887

RESUMO

Cardiac hypertrophy (CH) is one of the stages in the occurrence and development of severe cardiovascular diseases, and exploring its biomarkers is beneficial for delaying the progression of severe cardiovascular diseases. In this research, we established a comprehensive and highly efficient pseudotargeted metabolomics method, which demonstrated a superior capacity to identify differential metabolites when compared to traditionaluntargeted metabolomics. The intra/inter-day precision and reproducibility results proved the method is reliable and precise. The established method was then applied to seek the potential differentiated metabolic biomarkers of cardiac hypertrophy (CH) rats, and oxylipins, phosphorylcholine (PC), lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), Krebs cycle intermediates, carnitines, amino acids, and bile acids were disclosed to be the possible differentiate components. Their metabolic pathway analysis revealed that the potential metabolic alterations in CH rats were mainly associated with phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, and tyrosine metabolism. In sum, this research provided a comprehensiveand reliable LC-MS/MS MRM platform for pseudo-targeted metabolomics investigation of disease condition, and some interesting potential biomarkers were disclosed for CH, which merit further exploration in the future.


Assuntos
Biomarcadores , Cardiomegalia , Metaboloma , Metabolômica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Metabolômica/métodos , Biomarcadores/metabolismo , Biomarcadores/análise , Ratos , Masculino , Cardiomegalia/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Metaboloma/fisiologia , Cromatografia Líquida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...