Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(27): 3673-3676, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456471

RESUMO

The solution processed FAPbI3 perovskite usually suffers from chaotic orientations. Herein, a template structure of oriented 2D perovskite is used to obtain a high-quality FAPbI3 film with (001) preferred orientation by cation exchange. The highly oriented BA2PbI4 serves as a growth template and promotes the (001) orientation of the 3D perovskite. The dominantly (001) orientated FAPbI3 perovskite exhibits uniform surface morphology and suppressed film defects.

2.
Curr Issues Mol Biol ; 45(8): 6432-6448, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623225

RESUMO

In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min.

3.
Viruses ; 15(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37632078

RESUMO

Phages possess the ability to selectively eliminate pathogenic bacteria by recognizing bacterial surface receptors. Since their discovery, phages have been recognized for their potent bactericidal properties, making them a promising alternative to antibiotics in the context of rising antibiotic resistance. However, the rapid emergence of phage-resistant strains (generally involving temperature phage) and the limited host range of most phage strains have hindered their antibacterial efficacy, impeding their full potential. In recent years, advancements in genetic engineering and biosynthesis technology have facilitated the precise engineering of phages, thereby unleashing their potential as a novel source of antibacterial agents. In this review, we present a comprehensive overview of the diverse strategies employed for phage genetic engineering, as well as discuss their benefits and drawbacks in terms of bactericidal effect.


Assuntos
Bacteriófagos , Terapia por Fagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Engenharia Genética , Especificidade de Hospedeiro
4.
ACS Nano ; 17(7): 6435-6451, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939563

RESUMO

The evolution of artificial intelligence of things (AIoT) drastically facilitates the development of a smart city via comprehensive perception and seamless communication. As a foundation, various AIoT nodes are experiencing low integration and poor sustainability issues. Herein, a cubic-designed intelligent piezoelectric AIoT node iCUPE is presented, which integrates a high-performance energy harvesting and self-powered sensing module via a micromachined lead zirconate titanate (PZT) thick-film-based high-frequency (HF)-piezoelectric generator (PEG) and poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) nanofiber thin-film-based low-frequency (LF)-PEGs, respectively. The LF-PEG and HF-PEG with specific frequency up-conversion (FUC) mechanism ensures continuous power supply over a wide range of 10-46 Hz, with a record high power density of 17 mW/cm3 at 1 g acceleration. The cubic design allows for orthogonal placement of the three FUC-PEGs to ensure a wide range of response to vibrational energy sources from different directions. The self-powered triaxial piezoelectric sensor (TPS) combined with machine learning (ML) assisted three orthogonal piezoelectric sensing units by using three LF-PEGs to achieve high-precision multifunctional vibration recognition with resolutions of 0.01 g, 0.01 Hz, and 2° for acceleration, frequency, and tilting angle, respectively, providing a high recognition accuracy of 98%-100%. This work proves the feasibility of developing a ML-based intelligent sensor for accelerometer and gyroscope functions at resonant frequencies. The proposed sustainable iCUPE is highly scalable to explore multifunctional sensing and energy harvesting capabilities under diverse environments, which is essential for AIoT implementation.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835739

RESUMO

With the fast development of energy harvesting technology, micro-nano or scale-up energy harvesters have been proposed to allow sensors or internet of things (IoT) applications with self-powered or self-sustained capabilities. Facilitation within smart homes, manipulators in industries and monitoring systems in natural settings are all moving toward intellectually adaptable and energy-saving advances by converting distributed energies across diverse situations. The updated developments of major applications powered by improved energy harvesters are highlighted in this review. To begin, we study the evolution of energy harvesting technologies from fundamentals to various materials. Secondly, self-powered sensors and self-sustained IoT applications are discussed regarding current strategies for energy harvesting and sensing. Third, subdivided classifications investigate typical and new applications for smart homes, gas sensing, human monitoring, robotics, transportation, blue energy, aircraft, and aerospace. Lastly, the prospects of smart cities in the 5G era are discussed and summarized, along with research and application directions that have emerged.

6.
ACS Nano ; 15(12): 19054-19069, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34308631

RESUMO

The increasing population of the elderly and motion-impaired people brings a huge challenge to our social system. However, the walking stick as their essential tool has rarely been investigated into its potential capabilities beyond basic physical support, such as activity monitoring, tracing, and accident alert. Here, we report a walking stick powered by ultra-low-frequency human motion and equipped with deep-learning-enabled advanced sensing features to provide a healthcare-monitoring platform for motion-impaired users. A linear-to-rotary structure is designed to achieve highly efficient energy harvesting from the linear motion of a walking stick with ultralow frequency. Besides, two kinds of self-powered triboelectric sensors are proposed and integrated to extract the motion features of the walking stick. Augmented sensing functionalities with high accuracies have been enabled by deep-learning-based data analysis, including identity recognition, disability evaluation, and motion status distinguishing. Furthermore, a self-sustainable Internet of Things (IoT) system with global positioning system tracing and environmental temperature and humidity amenity sensing functions is obtained. Combined with the aforementioned functionalities, this walking stick is demonstrated in various usage scenarios as a caregiver for real-time well-being status and activity monitoring. The caregiving walking stick shows the potential of being an intelligent aid for motion-impaired users to help them live life with adequate autonomy and safety.


Assuntos
Inteligência Artificial , Internet das Coisas , Idoso , Bengala , Humanos , Monitorização Fisiológica , Movimento (Física)
7.
iScience ; 24(1): 101934, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33392482

RESUMO

Body sensor network (bodyNET) offers possibilities for future disease diagnosis, preventive health care, rehabilitation, and treatment. However, the eventual realization demands reliable and sustainable power sources. The flourishing energy harvesters (EHs) have provided prominent techniques for practically addressing the concurrent energy issue. Targeting for a specific energy source, wearable EHs with a sole conversion mechanism are well investigated. Hybrid EHs integrating different effects for a single source or multi-sources are attaining growing attention, for they provide another degree of freedom concerning a higher-level energy utility. Merging EHs with other functional electronics, diversified functional self-sustainable systems are developed, paving the way for the accomplishment of bodyNET. This review introduces the evolution of wearable EHs from a single effect to hybridized mechanisms for multiple energy sources and wearable to implantable self-sustainable systems. Last, we provide our perspectives on the future development of hybrid EHs to be more competitive with conventional batteries.

8.
Micromachines (Basel) ; 11(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861476

RESUMO

With the fast development of the fifth-generation cellular network technology (5G), the future sensors and microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS) are presenting a more and more critical role to provide information in our daily life. This review paper introduces the development trends and perspectives of the future sensors and MEMS/NEMS. Starting from the issues of the MEMS fabrication, we introduced typical MEMS sensors for their applications in the Internet of Things (IoTs), such as MEMS physical sensor, MEMS acoustic sensor, and MEMS gas sensor. Toward the trends in intelligence and less power consumption, MEMS components including MEMS/NEMS switch, piezoelectric micromachined ultrasonic transducer (PMUT), and MEMS energy harvesting were investigated to assist the future sensors, such as event-based or almost zero-power. Furthermore, MEMS rigid substrate toward NEMS flexible-based for flexibility and interface was discussed as another important development trend for next-generation wearable or multi-functional sensors. Around the issues about the big data and human-machine realization for human beings' manipulation, artificial intelligence (AI) and virtual reality (VR) technologies were finally realized using sensor nodes and its wave identification as future trends for various scenarios.

9.
Front Chem ; 6: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619367

RESUMO

Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga1-x Cr x N0.83Mn3 compounds. As x increases, the temperature span (ΔT) of NTE related with Γ5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (ΔT = 62 K) with an average linear coefficient of thermal expansion, α L = -46 ppm/K. The ΔT is expanded to 81 K (151-232 K) in x = 0.2 with α L = -22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x, which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one.

10.
Micromachines (Basel) ; 8(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-30400391

RESUMO

Based on the first resonance frequency measurement of multilayer beams, a simple extraction method has been developed to extract the Young's modulus of individual layers. To verify this method, the double-layer cantilever, as a typical example, is analyzed to simplify the situation and finite element modeling (FEM) is used in consideration of the buckling and unbuckling situation of cantilevers. The first resonance frequencies, which are obtained by ANSYS (15.0, ANSYS Inc., Pittsburgh, PA, USA) with a group of thirteen setting values of Young's modulus in the polysilicon layer are brought into the theoretical formulas to obtain a new group of Young's modulus in the polysilicon layer. The reliability and feasibility of the theoretical method are confirmed, according to the slight differences between the setting values and the results of the theoretical model. In the experiment, a series of polysilicon-metal double-layer cantilevers were fabricated. Digital holographic microscopy (DHM) (Lyncée Tech, Lausanne, Switzerland) is used to distinguish the buckled from the unbuckled. A scanning laser Doppler vibrometer (LDV) (Polytech GmbH, Berlin, Germany) system is used to measure the first resonance frequencies of them. After applying the measurement results into the theoretical modulus, the average values of Young's modulus in the polysilicon and gold layers are 151.78 GPa and 75.72 GPa, respectively. The extracted parameters are all within the rational ranges, compared with the available results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...