Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39060517

RESUMO

The measures to prevent COVID-19 pandemic had caused significant life changes, which may have caused stress on the mental health of children and adolescents. We aimed to evaluate the short- and long-term effects of life changes on children's mental health in a large Chinese cohort. Survey-based life changes during COVID-19 lockdown were measured among 7,829 Chinese students at Grade 1-9, including social contacts, lifestyles and family financial status. Clustering analysis was applied to identify potential patterns of these changes. Depressive and anxiety symptoms were measured using the Center for Epidemiologic Studies Depression Scale and Screen for Child Anxiety Related Emotional Disorders. Logistic regression models were used to investigate the associations between these changes, their patterns and the presence of depression/anxiety symptoms using both cross-sectional and longitudinal designs. We found that the prevalence of depression and anxiety symptoms decreased during pandemic (34.6-32.6%). However, during and shortly after lockdown, students who reported negative impacts on their study, social and outside activities, and diet had increased risks of depressive/anxiety symptoms. Decreased electronic time and sugar-sweetened consumption, as well as family income decline and unemployment, were also associated with higher risks of these symptoms. Additionally, students with changed sleep time had increased depressive symptoms. These associations attenuated or disappeared one year later. Similar patterns were observed in clustering analysis, while only the group with severe impact on family financial status showed a sustained increase in depression symptoms. In summary, restrictive measures that changed children and adolescents' daily life during COVID-19 lockdown showed negative effects on their mental health, with some commonalities and distinctions patterns in the manifestation of depression and anxiety symptoms.

2.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38995143

RESUMO

BACKGROUND: Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS: Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION: The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Assuntos
Genoma , Masculino , Animais , Feminino , Perciformes/genética , Processos de Determinação Sexual/genética , Cromossomos Sexuais/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Sintenia , Genômica/métodos
3.
J Ginseng Res ; 48(4): 405-416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036731

RESUMO

Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

4.
Adv Mater ; : e2403954, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992999

RESUMO

Soft pneumatic actuation is widely used in wearable devices, soft robots, artificial muscles, and surgery machines. However, generating high-pressure gases in a soft, controllable, and portable way remains a substantial challenge. Here, a class of programmable chemical reactions that can be used to controllably generate gases with a maximum pressure output of nearly 6 MPa is reported. It is proposed to realize the programmability of the chemical reaction process using thermoelectric material with programmable electric current and employing preprogrammed reversible chemical reactants. The programmable chemical reactions as soft pneumatic actuation can be operated independently as miniature gas sources (∼20-100 g) or combined with arbitrary physical structures to make self-contained machines, capable of generating unprecedented pressures of nearly 6 MPa or forces of about 18 kN in a controllable, portable, and silent manner. Striking demonstrations of breaking a brick, a marble, and concrete blocks, raising a sightseeing car, and successful applications in artificial muscles and soft assistive wearables illustrate tremendous application prospects of soft pneumatic actuation via programmable chemical reactions. The study establishes a new paradigm toward ultrastrong soft pneumatic actuation.

5.
Sci Rep ; 14(1): 15306, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961150

RESUMO

The Taihangshan-Yanshan region (TYR) is an important ecological barrier area for Beijing-Tianjin-Hebei, and the effectiveness of its ecological restoration and protection is of great significance to the ecological security pattern of North China. Based on the FVC data from 2000 to 2021, residual analysis, parametric optimal geodetector technique (OPGD) and multi-scale geographically weighted regression analysis (MGWR) were used to clarify the the multivariate driving mechanism of the evolution of FVC in the TYR. Results show that: (1) FVC changes in the TYR show a slowly fluctuating upward trend, with an average growth rate of 0.02/10a, and a spatial pattern of "high in the northwest and low in the southeast"; more than half of the FVC increased during the 22-year period. (2) The results of residual analysis showed that the effects of temperature and precipitation on FVC were very limited, and a considerable proportion (80.80% and 76.78%) of the improved and degraded areas were influenced by other factors. (3) The results of OPGD showed that the main influencing factors of the spatial differentiation of FVC included evapotranspiration, surface temperature, land use type, nighttime light intensity, soil type, and vegetation type (q > 0.2); The explanatory rates of the two-factor interactions were greater than those of the single factor, which showed either nonlinear enhancement or bifactorial enhancement, among which, the interaction of evapotranspiration with mean air and surface temperature has the strongest effect on the spatial and temporal evolution of FVC (q = 0.75). Surface temperature between 4.98 and 10.4 °C, evapotranspiration between 638 and 762 mm/a, and nighttime light between 1.96 and 7.78 lm/m2 favoured an increase in vegetation cover, and vegetation developed on lysimetric soils was more inclined to be of high cover. (4) The correlation between each variable and FVC showed different performance, GDP, elevation, slope and FVC showed significant positive correlation in most regions, while population size, urban population proportion, GDP proportion of primary and secondary industries, and nighttime light intensity all showed negative correlation with FVC to different degrees. The results can provide data for formulating regional environmental protection and restoration policies.


Assuntos
Ecossistema , China , Conservação dos Recursos Naturais , Plantas , Temperatura , Monitoramento Ambiental/métodos , Solo
6.
J Transl Med ; 22(1): 673, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033303

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) is a complicated hematopoietic malignancy characterized by bone marrow (BM) dysplasia with symptoms like anemia, neutropenia, or thrombocytopenia. MDS exhibits considerable heterogeneity in prognosis, with approximately 30% of patients progressing to acute myeloid leukemia (AML). Single cell RNA-sequencing (scRNA-seq) is a new and powerful technique to profile disease landscapes. However, the current available scRNA-seq datasets for MDS are only focused on CD34+ hematopoietic progenitor cells. We argue that using entire BM cell for MDS studies probably will be more informative for understanding the pathophysiology of MDS. METHODS: Five MDS patients and four healthy donors were enrolled in the study. Unsorted cells from BM aspiration were collected for scRNA-seq analysis to profile overall alteration in hematopoiesis. RESULTS: Standard scRNA-seq analysis of unsorted BM cells successfully profiles deficient hematopoiesis in all five MDS patients, with three classified as high-risk and two as low-risk. While no significant increase in mutation burden was observed, high-risk MDS patients exhibited T-cell activation and abnormal myelogenesis at the stages between hematopoietic stem and progenitor cells (HSPC) and granulocyte-macrophage progenitors (GMP). Transcriptional factor analysis on the aberrant myelogenesis suggests that the epigenetic regulator chromatin structural protein-encoding gene HMGA1 is highly activated in the high-risk MDS group and moderately activated in the low-risk MDS group. Perturbation of HMGA1 by CellOracle simulated deficient hematopoiesis in mouse Lineage-negative (Lin-) BM cells. Projecting MDS and AML cells on a BM cell reference by our newly developed MarcoPolo pipeline intuitively visualizes a connection for myeloid leukemia development and abnormalities of hematopoietic hierarchy, indicating that it is technically feasible to integrate all diseased bone marrow cells on a common reference map even when the size of the cohort reaches to 1,000 patients or more. CONCLUSION: Through scRNA-seq analysis on unsorted cells from BM aspiration samples of MDS patients, this study systematically profiled the development abnormalities in hematopoiesis, heterogeneity of risk, and T-cell microenvironment at the single cell level.


Assuntos
Genômica , Hematopoese , Síndromes Mielodisplásicas , Análise de Célula Única , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Hematopoese/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Células-Tronco Hematopoéticas/metabolismo , Microambiente Celular , Mutação/genética
7.
Sci Total Environ ; 949: 174931, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043300

RESUMO

Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts. In addition, research regarding phage in poultry, aquaculture and livestock are summarized, and application of phages in antibiotic substitution, phage therapy and food safety are reviewed.

8.
Front Immunol ; 15: 1399222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026679

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is a formidable challenge in oncology research, with a complex pathogenesis that requires to be explored. Major Vault Protein (MVP) is the principal structural component of the vault complex, and its expression level is remarkably upregulated in various cancers. Extensive investigations have been conducted to explore the role of MVP in specific cancer contexts, yet the potential molecular mechanisms and biological functions of MVP in PAAD still remain considerably elusive. This study aims to explore the role of MVP as a novel immune-related biomarker in the pathogenesis and clinical treatment of PAAD. Methods: Gene expression data and clinical information were collected from TCGA, GTEx and GEO databases. Survival, prognostic and functional enrichment analysis were employed with R software. Immunological correlation analysis was performed using TIMER2.0, TIDE scores, TISIDB and TISCH. Epigenetic analysis was implemented by MethSurv, CPTAC, UALCAN, and cBioPortal. Drug analysis was conducted using Enrichr and CellMiner. Moreover, cellular experiments, like RNA interference, qRT-PCR, Western blot, cell cycle analysis, cell apoptosis analysis, colony formation assay, transwell assay, and wound healing assay, were performed for verifying the functional properties of MVP in the PAAD progression. Results: We demonstrated an abnormally upregulated expression of MVP in PAAD tissues, which notably correlated with an adverse prognosis in PAAD patients. Functional analysis suggested the conceivable involvement of MVP in immune modulation, and immunotherapy. Additionally, we identified genetic alterations, reduced promoter methylation, and heightened phosphorylation in MVP. We also clarified Suloctidil and Tetradioxin as the most notable potential drugs targeting MVP in PAAD. Moreover, our experimental observations consistently highlighted the significant impact of MVP deficiency on impeding PAAD cell proliferation, inhibiting cell migration, and accelerating cell apoptosis. Interestingly, a potential link between MVP and ERK or AKT pathways was displayed, which opens new avenues for further exploration of the molecular mechanisms of MVP-targeted therapies in PAAD. Conclusions: This study systematically describes MVP as an immune-related biomarker with remarkable potential for predicting the prognosis, tumor progression and immunotherapeutic efficacy in PAAD.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Partículas de Ribonucleoproteínas em Forma de Abóbada , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Adenocarcinoma/imunologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Prognóstico , Apoptose
9.
Ecotoxicol Environ Saf ; 282: 116704, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996646

RESUMO

Hyperaccumulators are the material basis and key to the phytoremediation of heavy metal contaminated soils. Conventional methods for screening hyperaccumulators are highly dependent on the time- and labor-consuming sampling and chemical analysis. In this study, a novel spectral approach assisted with multi-task deep learning was proposed to streamline accumulating ecotype screening, heavy metal stress discrimination, and heavy metals quantification in plants. The significant Cd/Zn co-hyperaccumulator Sedum alfredii and its non-accumulating ecotype were stressed by Cd, Zn, and Pb. Spectral images of leaves were rapidly acquired by hyperspectral imaging. The self-designed deep learning architecture was composed of a shallow network (ENet) for accumulating ecotype identification, and a multi-task network (HMNet) for heavy metal stress type and accumulation prediction simultaneously. To further assess the robustness of the networks, they were compared with conventional machine learning models (i.e., partial least squares (PLS) and support vector machine (SVM)) on a series of evaluation metrics of classification, multi-label classification, and regression. S. alfredii with heavy metals accumulation capability was identified by ENet with 100 % accuracy. HMNet reduced overfitting and outperformed machine learning models with the average exact match ratio (EMR) of heavy metal stress discrimination increased by 7.46 %, and residual prediction deviations (RPD) of heavy metal concentrations prediction increased by 53.59 %. The method succeeded in rapidly and accurately discriminating heavy metal stress with EMRs over 91 % and accuracies over 96 %, and in predicting heavy metals accumulation with an average RPD of 3.29 for Zn, 2.57 for Cd, and 2.53 for Pb, indicating the satisfactory practicability and potential for sensing heavy metals accumulation. This study provides a relatively novel spectral method to facilitate hyperaccumulator screening and heavy metals accumulation prediction in the phytoremediation process.

10.
Plant Phenomics ; 6: 0217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077120

RESUMO

The radiation use efficiency (RUE) is one of the most important functional traits determining crop productivity. The coordination of the vertical distribution of light and leaf nitrogen has been proven to be effective in boosting the RUE from both experimental and computational evidence. However, previous simulation studies have primarily assumed that the leaf area is uniformly distributed along the canopy depth, rarely considering the optimization of the leaf area distribution, especially for C4 crops. The present study hypothesizes that the RUE may be maximized by matching the leaf area and leaf nitrogen vertical distributions in the canopy. To test this hypothesis, various virtual maize canopies were generated by combining the leaf inclination angle, vertical leaf area distribution, and vertical leaf nitrogen distribution and were further evaluated by an improved multilayer canopy photosynthesis model. We found that a greater fraction of leaf nitrogen is preferentially allocated to canopy layers with greater leaf areas to maximize the RUE. The coordination of light and nitrogen emerged as a property from the simulations to maximize the RUE in most scenarios, particularly in dense canopies. This study not only facilitates explicit and precise profiling of ideotypes for maximizing the RUE but also represents a primary step toward high-throughput phenotyping and screening of the RUE for massive numbers of inbred lines and cultivars.

11.
Front Oncol ; 14: 1384268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841156

RESUMO

Objective: This study aimed to investigate the feasibility and effectiveness of using indocyanine green (ICG) injected intracutaneously through the lower limbs and perineum for visualized tracking, localization, and qualitative assessment of pelvic lymph nodes (LNs) in bladder cancer to achieve their accurate resection. Methods: First, ICG was injected into the LN metastasis model mice lower limbs, and real-time and dynamic in vivo and ex vivo imaging was conducted by using a near-infrared fluorescence imaging system. Additionally, 26 patients with bladder cancer were enrolled and divided into intracutaneous group and transurethral group. A near-infrared fluorescence imaging device with internal and external imaging probes was used to perform real-time tracking, localization, and resection of the pelvic LNs. Results: The mice normal LNs and the metastatic LNs exhibited fluorescence. The metastatic LNs showed a significantly higher signal-to-background ratio than the normal LNs (3.9 ± 0.2 vs. 2.0 ± 0.1, p < 0.05). In the intracutaneous group, the accuracy rate of fluorescent-labeled LNs was 97.6%, with an average of 11.3 ± 2.4 LNs resected per patient. Six positive LNs were detected in three patients (18.8%). In the transurethral group, the accuracy rate of fluorescent-labeled LNs was 84.4%, with an average of 8.6 ± 2.3 LNs resected per patient. Two positive LNs were detected in one patient (12.5%). Conclusion: Following the intracutaneous injection of ICG into the lower limbs and perineum, the dye accumulates in pelvic LNs through lymphatic reflux. By using near-infrared fluorescence laparoscopic fusion imaging, physicians can perform real-time tracking, localization, and precise resection of pelvic LNs.

12.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928290

RESUMO

Influenza virus infection poses a great threat to human health globally each year. Non-coding RNAs (ncRNAs) in the human genome have been reported to participate in the replication process of the influenza virus, among which there are still many unknowns about Long Intergenic Non-Coding RNAs (LincRNAs) in the cell cycle of viral infections. Here, we observed an increased expression of Linc01615 in A549 cells upon influenza virus PR8 infection, accompanied by the successful activation of the intracellular immune system. The knockdown of Linc01615 using the shRNAs promoted the proliferation of the influenza A virus, and the intracellular immune system was inhibited, in which the expressions of IFN-ß, IL-28A, IL-29, ISG-15, MX1, and MX2 were decreased. Predictions from the catRAPID website suggested a potential interaction between Linc01615 and DHX9. Also, knocking down Linc01615 promoted influenza virus proliferation. The subsequent transcriptome sequencing results indicated a decrease in Linc01615 expression after influenza virus infection when DHX9 was knocked down. Further analysis through cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) in HEK293 cells stably expressing DHX9 confirmed the interaction between DHX9 and Linc01615. We speculate that DHX9 may interact with Linc01615 to partake in influenza virus replication and that Linc01615 helps to activate the intracellular immune system. These findings suggest a deeper connection between DHX9 and Linc01615, which highlights the significant role of Linc01615 in the influenza virus replication process. This research provides valuable insights into understanding influenza virus replication and offers new targets for preventing influenza virus infections.


Assuntos
RNA Helicases DEAD-box , Influenza Humana , RNA Longo não Codificante , Replicação Viral , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células A549 , Células HEK293 , Influenza Humana/virologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Vírus da Influenza A/fisiologia , Animais , Cães , Técnicas de Silenciamento de Genes , Proteínas de Neoplasias
13.
Anal Bioanal Chem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878181

RESUMO

As a representative gas of food spoilage, the development of rapid hydrogen sulfide (H2S) analysis strategies for food safety control is in great demand. Despite traditional methods for H2S detection possessing great achievements, they are still incapable of meeting the requirement of portability and quantitative detection at the same time. Herein, a nanozyme catalysis pressure-powered sensing platform that enables visual quantification with the naked eye is proposed. In this methodology, Pt nanozyme inherits the catalase-like activity to facilitate the decomposition of H2O2 to O2, which can significantly improve the pressure in the closed container, further pushing the movement of indicator dye. Furthermore, H2S was found to effectively inhibit the catalytic activity of Pt nanozyme, indicating that the catalase-like activity of PtNPs may be regulated by varying concentrations of H2S. Therefore, by utilizing a self-designed pressure-powered microchannel device, the concentration of H2S was successfully converted into a distinct signal variation in distance. The effectiveness of the as-designed sensor in assessing the spoilage of red wine by H2S determination has been demonstrated. It exhibits a strong correlation between the change in dye distance and H2S concentration within the range of 1-250 µM, with a detection limit of 0.17 µM. This method is advantageous as it enhances the quantitative detection of H2S with the naked eye based on the portable pressure-powered sensing platform, as compared to traditional H2S biosensors. Such a pressure-powered distance variation platform would greatly broaden the application of H2S-based detection in food spoilage management.

14.
PeerJ ; 12: e17512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832033

RESUMO

The sand fixing shelter forests in the Horqin Sandy Land are a key area in the "3-North" Shelter Forest Program in China, which has a history of over 50 years of artificial afforestation. Populus simonii Carr is one of the most dominant silvicultural species in the region. The aim of this study is to understand the soil characteristics and soil fertility of Populus simonii shelter forests at different growth stages and to establish a scientific basis for soil nutrient regulation and sustainable management of Populus simonii shelter forests at the southern edge of the Horqin Sandy Land. Sample plots were selected for young (≤15 a), middle-aged (16-25 a), near-mature (26-30 a), mature (31-40 a), and over-mature (≥41 a) forests. Each forest studied was in a state of natural restoration with uniform stand conditions and no artificial fertilizer was applied. These sites were selected to study changes in the soil characteristics in soil depths of 0-20, 20-40, and 40-60 cm. In order to avoid the problem of multicollinearity between soil variables and to reduce redundancy, principal component analysis (PCA), Pearson's correlation analysis, and Norm value calculation were used to select the least correlated indicators with the highest factor loadings. This was used to establish the minimum data set. The soil fertility quality of these shelterbelts in different forest ages was quantified using the soil quality index (SQI). In the growth stage from young to nearly mature forests, the soil bulk weight and pH decreased with increasing forest age. Soil capillary porosity, noncapillary porosity, total porosity, water content, field water holding capacity, and organic carbon content increased with increasing forest age and soil nutrient content gradually improved. At the stage of near-mature to over-mature forests, the effect of forest age on soil bulk density was not significant and all other soil characteristics decreased to varying degrees as the forest age increased. The soil also developed from alkaline to neutral. The SQI of the total data set and the SQI of the minimum data set consistently showed that near-mature forests (NMF) > middle-aged forests (MAF) > mature forests (MF) > over-mature forests (OMF) > young forests (YF). The results of the two evaluation systems showed a significant positive correlation (P < 0.05, R 2 = 0.8263) indicating that it is feasible to use the minimum data set to evaluate the soil fertility of shelter forests of different forest ages. The age of the forest has an obvious effect on the soil characteristics and overall soil fertility of shelter forests. The Populus simonii shelter forests on the southern edge of the Horqin Sandy Land have great soil development at the early stage of afforestation and the soil nutrient content gradually increases. The soil fertility reaches a peak when the forest is nearly mature and the soil fertility declines after the age of the forest reaches 30 years.


Assuntos
Florestas , Populus , Solo , Populus/crescimento & desenvolvimento , China , Solo/química , Conservação dos Recursos Naturais
15.
J Nanobiotechnology ; 22(1): 313, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840120

RESUMO

Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.


Assuntos
Neoplasias da Mama , Antígeno CD56 , Células Matadoras Naturais , Fotoquimioterapia , Polietilenoglicóis , Neoplasias da Mama/terapia , Humanos , Feminino , Animais , Fotoquimioterapia/métodos , Camundongos , Polietilenoglicóis/química , Linhagem Celular Tumoral , Antígeno CD56/metabolismo , Imunoterapia Adotiva/métodos , Apoptose/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus
16.
Nat Commun ; 15(1): 5209, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890388

RESUMO

Despite the importance of spliceosome core components in cellular processes, their roles in cancer development, including hepatocellular carcinoma (HCC), remain poorly understood. In this study, we uncover a critical role for SmD2, a core component of the spliceosome machinery, in modulating DNA damage in HCC through its impact on BRCA1/FANC cassette exons and expression. Our findings reveal that SmD2 depletion sensitizes HCC cells to PARP inhibitors, expanding the potential therapeutic targets. We also demonstrate that SmD2 acetylation by p300 leads to its degradation, while HDAC2-mediated deacetylation stabilizes SmD2. Importantly, we show that the combination of Romidepsin and Olaparib exhibits significant therapeutic potential in multiple HCC models, highlighting the promise of targeting SmD2 acetylation and HDAC2 inhibition alongside PARP inhibitors for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Éxons , Neoplasias Hepáticas , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Spliceossomos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Acetilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Spliceossomos/metabolismo , Spliceossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Ftalazinas/farmacologia , Éxons/genética , Piperazinas/farmacologia , Animais , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Camundongos , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
17.
Plant Phenomics ; 6: 0188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933805

RESUMO

The tassel state in maize hybridization fields not only reflects the growth stage of the maize but also reflects the performance of the detasseling operation. Existing tassel detection models are primarily used to identify mature tassels with obvious features, making it difficult to accurately identify small tassels or detasseled plants. This study presents a novel approach that utilizes unmanned aerial vehicles (UAVs) and deep learning techniques to accurately identify and assess tassel states, before and after manually detasseling in maize hybridization fields. The proposed method suggests that a specific tassel annotation and data augmentation strategy is valuable for substantial enhancing the quality of the tassel training data. This study also evaluates mainstream object detection models and proposes a series of highly accurate tassel detection models based on tassel categories with strong data adaptability. In addition, a strategy for blocking large UAV images, as well as improving tassel detection accuracy, is proposed to balance UAV image acquisition and computational cost. The experimental results demonstrate that the proposed method can accurately identify and classify tassels at various stages of detasseling. The tassel detection model optimized with the enhanced data achieves an average precision of 94.5% across all categories. An optimal model combination that uses blocking strategies for different development stages can improve the tassel detection accuracy to 98%. This could be useful in addressing the issue of missed tassel detections in maize hybridization fields. The data annotation strategy and image blocking strategy may also have broad applications in object detection and recognition in other agricultural scenarios.

18.
Research (Wash D C) ; 7: 0393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812533

RESUMO

One of the fundamental principles of electrostatics is that an uncharged object will be attracted to a charged object through electrostatic induction as the two approaches one another. We refer to the charged object as a single electrode and examine the scenario where a positive voltage is applied. Because of electrostatic induction phenomenon, single-electrode electrostatics only generates electrostatic attraction forces. Here, we discover that single-electrode electrostatics can generate electrostatic repulsion forces and define this new phenomenon as single-electrode electrostatic repulsion phenomenon. We investigate the fundamental electrostatic phenomena, giving a curve of electrostatic force versus voltage and then defining 3 regions. Remote actuation and manipulation are essential technologies that are of enormous concern, with tweezers playing an important role. Various tweezers designed on the basis of external fields of optics, acoustics, and magnetism can be used for remote actuation and manipulation, but some inherent drawbacks still exist. Tweezers would benefit greatly from our discovery in electrostatics. On the basis of this discovery, we propose the concept of electrostatic tweezers, which can achieve noncontact and remote actuation and manipulation. Experimental characterizations and successful applications in metamaterials, robots, and manipulating objects demonstrated that electrostatic tweezers can produce large deformation rates (>6,000%), fast actuation (>100 Hz), and remote manipulating distance (~15 cm) and have the advantages of simple device structure, easy control, lightweight, no dielectric breakdown, and low cost. Our work may deepen people's understanding of single-electrode electrostatics and opens new opportunities for remote actuation and manipulation.

19.
Sci Total Environ ; 939: 173599, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821292

RESUMO

The deep-water environment and its ecosystem are becoming the ultimate sinks for Polychlorinated Biphenyls (PCBs). A three-dimensional hydrodynamic-ecosystem-PCB coupled model was applied to the Sea of Japan (SoJ), where deep water is isolated from the surrounding oceans, to elucidate the accumulation processes of CB153 and assess the contributions of physical and biological processes to the accumulation. We suggest that the dissolved CB153 concentration formed a three-layer vertical structure in the SoJ: the highest concentration is in the intermediate layer (100-600 m), followed by those in the deep (600 m to the bottom) and surface layers (0-100 m). Different accumulation mechanisms in the northern and southern SoJ were discovered. The oceanic biological pump enhances the accumulation in the northern SoJ by taking CB153 out of the thermocline in summer and contributes 70 % to the accumulation in the intermediate layer; while the vertical advection contributes 70 % to the accumulation in the intermediate and deep layer in the southern SoJ.

20.
Int J Biol Macromol ; 270(Pt 1): 132344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754666

RESUMO

Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.


Assuntos
Luteolina , Nanofibras , gama-Ciclodextrinas , Nanofibras/química , gama-Ciclodextrinas/química , Luteolina/química , Luteolina/farmacologia , Solubilidade , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Picratos/química , Compostos de Bifenilo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...