Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Cancer Res Commun ; 3(12): 2497-2509, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37956312

RESUMO

The BCL2 inhibitor venetoclax promotes apoptosis in blood cancer cells and is approved for treatment of chronic lymphocytic leukemia and acute myeloid leukemia. However, multiple myeloma cells are frequently more dependent on MCL-1 for survival, conferring resistance to venetoclax. Here we report that mevalonate pathway inhibition with statins can overcome resistance to venetoclax in multiple myeloma cell lines and primary cells. In addition, statins sensitize to apoptosis induced by MCL-1 inhibitor, S63845. In retrospective analysis of venetoclax clinical studies in multiple myeloma, background statin use was associated with a significantly enhanced rate of stringent complete response and absence of progressive disease. Statins sensitize multiple myeloma cells to venetoclax by upregulating two proapoptotic proteins: PUMA via a p53-independent mechanism and NOXA via the integrated stress response. These findings provide rationale for prospective testing of statins with venetoclax regimens in multiple myeloma. SIGNIFICANCE: BH3 mimetics including venetoclax hold promise for treatment of multiple myeloma but rational combinations are needed to broaden efficacy. This study presents mechanistic and clinical data to support addition of pitavastatin to venetoclax regimens in myeloma. The results open a new avenue for repurposing statins in blood cancer.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Inibidores de Hidroximetilglutaril-CoA Redutases , Mieloma Múltiplo , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Estudos Retrospectivos , Estudos Prospectivos , Antineoplásicos/farmacologia , Neoplasias Hematológicas/tratamento farmacológico
3.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526080

RESUMO

Entry of antigen-specific T cells into human tumors is critical for immunotherapy, but the underlying mechanisms are poorly understood. Here, we combined high-dimensional spatial analyses with in vitro and in vivo modeling to study the mechanisms underlying immune infiltration in human multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS). Clustered tumor growth was a feature of MM but not MGUS biopsies, and this growth pattern was reproduced in humanized mouse models. MM biopsies exhibited intralesional as well as spatial heterogeneity, with coexistence of T cell-rich and T cell-sparse regions and the presence of areas of T cell exclusion. In vitro studies demonstrated that T cell entry into MM clusters was regulated by agonistic signals and CD2-CD58 interactions. Upon adoptive transfer, antigen-specific T cells localized to the tumor site but required in situ DC-mediated antigen presentation for tumor entry. C-type lectin domain family 9 member A-positive (CLEC9A+) DCs appeared to mark portals of entry for gradients of T cell infiltration in MM biopsies, and their proximity to T cell factor 1-positive (TCF1+) T cells correlated with disease state and risk status. These data illustrate a role for tumor-associated DCs and in situ activation in promoting the infiltration of antigen-specific T cells in MM and provide insights into spatial alterations in tumor/immune cells with malignant evolution.


Assuntos
Mieloma Múltiplo , Lesões Pré-Cancerosas , Animais , Camundongos , Humanos , Mieloma Múltiplo/patologia , Linfócitos T , Lesões Pré-Cancerosas/patologia , Imunoterapia/métodos , Apresentação de Antígeno , Células Dendríticas
4.
Nat Cancer ; 4(5): 754-773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237081

RESUMO

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Genômica , Genoma , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
5.
Sci Adv ; 8(39): eabq5575, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170375

RESUMO

The connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs). Interrogation of ETC-suppressed MM reveals integrated stress response-dependent suppression of protein translation and ubiquitination, leading to PI resistance. ETC and protein translation gene expression signatures from the CoMMpass trial are down-regulated in patients with poor outcome and relapse, corroborating our in vitro findings. ETC-suppressed MM exhibits up-regulation of the cystine-glutamate antiporter SLC7A11, and analysis of patient single-cell RNA-seq shows that clusters with low ETC gene expression correlate with higher SLC7A11 expression. Furthermore, erastin or venetoclax treatment diminishes mitochondrial stress-induced PI resistance. In sum, our work demonstrates that mitochondrial stress promotes PI resistance and underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic state.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Antiporters , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Cistina/metabolismo , Cistina/uso terapêutico , Glutamatos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas
8.
Blood ; 139(9): 1259-1260, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238890
9.
Blood ; 139(4): 523-537, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084470

RESUMO

Current limitations in using chimeric antigen receptor T(CART) cells to treat patients with hematological cancers include limited expansion and persistence in vivo that contribute to cancer relapse. Patients with chronic lymphocytic leukemia (CLL) have terminally differentiated T cells with an exhausted phenotype and experience low complete response rates after autologous CART therapy. Because PI3K inhibitor therapy is associated with the development of T-cell-mediated autoimmunity, we studied the effects of inhibiting the PI3Kδ and PI3Kγ isoforms during the manufacture of CART cells prepared from patients with CLL. Dual PI3Kδ/γ inhibition normalized CD4/CD8 ratios and maximized the number of CD8+ T-stem cell memory, naive, and central memory T-cells with dose-dependent decreases in expression of the TIM-3 exhaustion marker. CART cells manufactured with duvelisib (Duv-CART cells) showed significantly increased in vitro cytotoxicity against CD19+ CLL targets caused by increased frequencies of CD8+ CART cells. Duv-CART cells had increased expression of the mitochondrial fusion protein MFN2, with an associated increase in the relative content of mitochondria. Duv-CART cells exhibited increased SIRT1 and TCF1/7 expression, which correlated with epigenetic reprograming of Duv-CART cells toward stem-like properties. After transfer to NOG mice engrafted with a human CLL cell line, Duv-CART cells expressing either a CD28 or 41BB costimulatory domain demonstrated significantly increased in vivo expansion of CD8+ CART cells, faster elimination of CLL, and longer persistence. Duv-CART cells significantly enhanced survival of CLL-bearing mice compared with conventionally manufactured CART cells. In summary, exposure of CART to a PI3Kδ/γ inhibitor during manufacturing enriched the CART product for CD8+ CART cells with stem-like qualities and enhanced efficacy in eliminating CLL in vivo.


Assuntos
Imunoterapia Adotiva/métodos , Isoquinolinas/uso terapêutico , Leucemia Linfocítica Crônica de Células B/terapia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Purinas/uso terapêutico , Animais , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Epigênese Genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos
10.
Transplant Cell Ther ; 28(2): 75.e1-75.e7, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626863

RESUMO

Although survival outcomes have improved dramatically over the last few decades in newly diagnosed myeloma patients, elderly patients have not yielded the same magnitude of benefit as evidenced by higher rates of reported myeloma-related deaths in patients over the age of 75. This is of particular importance given this cohort comprises a large proportion of myeloma patients with the median age of diagnosis being 70 years. One contributor to this discrepancy is reduced use of high-dose therapy and autologous stem cell transplantation (HDT/ASCT) in this population because of concerns for increased toxicity and safety. The objective of this retrospective analysis is to evaluate survival and safety outcomes in 53 newly diagnosed patients ≥74 years of age who underwent HDT/ASCT at our institution in comparison to 122 control patients in the same age bracket who did not undergo stem cell transplantation during this same time period. Patients treated at our institution were identified in our institutional myeloma database by age. They were all treated between November 2006 and October 2016 at the Winship Cancer Institute of Emory University. Fifty-three patients were identified who had undergone HDT/ASCT, and, to assess the relative benefit of ASCT, 122 control patients in the same age range were also identified who did not undergo HDT/ASCT during the same time period. The median age for the entire cohort was 77 years (74 years in the ASCT group versus 78 in the non-ASCT group). Median time to ASCT was 6 months (range 2-57 months). There were no gender or race differences between the 2 groups, although a higher proportion of high-risk patients underwent HDT/ASCT. Ninety-three percent of ASCT patients received triplet induction therapy with a proteasome inhibitor and immunomodulatory agent backbone in comparison to only 55% of patients the non-ASCT group. The median progression-free survival (PFS) for the ASCT group was 50 months versus 30 months in the non-ASCT group. The median overall survival (OS) was 80 months versus 40 months, respectively. In high-risk patients, the median PFS was 60.8 months, and the median OS was 77.8 months in the ASCT group compared to 26 months and 38 months in the non-ASCT group, respectively. There were no transplant-related deaths within the first 100 days in the ASCT group. This study offers real-world perspective and data on the safety and survival benefit of ASCT in the elderly population with a near doubling of OS when compared to those treated with similar regimens and modern agents without ASCT. These data provide a rationale for offering ASCT in elderly patients pending a thorough pretransplantation evaluation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Idoso , Humanos , Mieloma Múltiplo/terapia , Estudos Retrospectivos , Transplante de Células-Tronco/efeitos adversos , Transplante Autólogo
11.
Blood Cancer Discov ; 2(6): 600-615, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778800

RESUMO

Waldenstrom macroglobulinemia (WM) and its precursor IgM gammopathy are distinct disorders characterized by clonal mature IgM-expressing B-cell outgrowth in the bone marrow. Here, we show by high-dimensional single-cell immunogenomic profiling of patient samples that these disorders originate in the setting of global B-cell compartment alterations, characterized by expansion of genomically aberrant extrafollicular B cells of the nonmalignant clonotype. Alterations in the immune microenvironment preceding malignant clonal expansion include myeloid inflammation and naïve B- and T-cell depletion. Host response to these early lesions involves clone-specific T-cell immunity that may include MYD88 mutation-specific responses. Hematopoietic progenitors carry the oncogenic MYD88 mutations characteristic of the malignant WM clone. These data support a model for WM pathogenesis wherein oncogenic alterations and signaling in progenitors, myeloid inflammation, and global alterations in extrafollicular B cells create the milieu promoting extranodal pattern of growth in differentiated malignant cells. SIGNIFICANCE: These data provide evidence that growth of the malignant clone in WM is preceded by expansion of extrafollicular B cells, myeloid inflammation, and immune dysfunction in the preneoplastic phase. These changes may be related in part to MYD88 oncogenic signaling in pre-B progenitor cells and suggest a novel model for WM pathogenesis. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Fator 88 de Diferenciação Mieloide , Macroglobulinemia de Waldenstrom , Linfócitos B/patologia , Humanos , Inflamação/genética , Fator 88 de Diferenciação Mieloide/genética , Oncogenes , Microambiente Tumoral , Macroglobulinemia de Waldenstrom/genética
12.
Blood ; 137(26): 3604-3615, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649772

RESUMO

Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood. We show that knockdown of cyclin D1 does not induce resistance to venetoclax, arguing against a direct role for cyclin D1 in venetoclax sensitivity. To identify other factors contributing to venetoclax response, we studied a panel of 31 myeloma cell lines and 25 patient samples tested for venetoclax sensitivity. In cell lines, we corroborated our previous observation that BIM binding to BCL2 correlates with venetoclax response and further showed that knockout of BIM results in decreased venetoclax sensitivity. RNA-sequencing analysis identified expression of B-cell genes as enriched in venetoclax-sensitive myeloma, although no single gene consistently delineated sensitive and resistant cells. However, a panel of cell surface makers correlated well with ex vivo prediction of venetoclax response in 21 patient samples and may serve as a biomarker independent of t(11;14). Assay for transposase-accessible chromatin sequencing of myeloma cell lines also identified an epigenetic program in venetoclax-sensitive cells that was more similar to B cells than that of venetoclax-resistant cells, as well as enrichment for basic leucine zipper domain-binding motifs such as BATF. Together, these data indicate that remnants of B-cell biology are associated with BCL2 dependency and point to novel biomarkers of venetoclax-sensitive myeloma independent of t(11;14).


Assuntos
Linfócitos B/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo , Sulfonamidas/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/metabolismo , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 14/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Translocação Genética/efeitos dos fármacos
13.
Blood Lymphat Cancer ; 11: 11-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737856

RESUMO

Although much progress has been made in the treatment of multiple myeloma, the majority of patients fail to be cured and require numerous lines of therapy. Inhibitors of the BCL2 family represent an exciting new class of drugs with a novel mechanism of action that are likely to have activity as single agents and in combination with existing myeloma therapies. The BCL2 proteins are oncogenes that promote cell survival and are frequently upregulated in multiple myeloma, making them attractive targets. Venetoclax, a BCL2 specific inhibitor, is furthest along in development and has shown promising results in a subset of myeloma characterized by the t(11;14) translocation. Combining venetoclax with proteasome inhibitors and monoclonal antibodies has improved responses in a broader group of patients, but has come at the expense of a toxicity safety signal that requires additional follow-up. MCL1 inhibitors are likely to be effective in a broader range of patients and are currently in early clinical trials. This review will cover much of what is known about the biology of these drugs, biomarkers that predict response, mechanisms of resistance, and unanswered questions as they pertain to multiple myeloma.

14.
Mol Ther Oncolytics ; 20: 519-531, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33738338

RESUMO

Because most patients with multiple myeloma (MM) develop resistance to current regimens, novel approaches are needed. Genetically modified, replication-competent oncolytic viruses exhibit high tropism for tumor cells regardless of cancer stage and prior treatment. Receptors of oncolytic herpes simplex virus 1 (oHSV-1), NECTIN-1, and HVEM are expressed on MM cells, prompting us to investigate the use of oHSV-1 against MM. Using oHSV-1-expressing GFP, we found a dose-dependent increase in the GFP+ signal in MM cell lines and primary MM cells. Whereas NECTIN-1 expression is variable among MM cells, we discovered that HVEM is ubiquitously and highly expressed on all samples tested. Expression of HVEM was consistently higher on CD138+/CD38+ plasma cells than in non-plasma cells. HVEM blocking demonstrated the requirement of this receptor for infection. However, we observed that, although oHSV-1 could efficiently infect and kill all MM cell lines tested, no viral replication occurred. Instead, we identified that oHSV-1 induced MM cell apoptosis via caspase-3 cleavage. We further noted that oHSV-1 yielded a significant decrease in tumor volume in two mouse xenograft models. Therefore, oHSV-1 warrants exploration as a novel potentially effective treatment option in MM, and HVEM should be investigated as a possible therapeutic target.

15.
Clin Cancer Res ; 27(11): 3178-3189, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731366

RESUMO

PURPOSE: Multiple myeloma is a malignancy of plasma cells. Extensive genetic and transcriptional characterization of myeloma has identified subtypes with prognostic and therapeutic implications. In contrast, relatively little is known about the myeloma epigenome. EXPERIMENTAL DESIGN: CD138+CD38+ myeloma cells were isolated from fresh bone marrow aspirate or the same aspirate after freezing for 1-6 months. Gene expression and chromatin accessibility were compared between fresh and frozen samples by RNA sequencing (RNA-seq) and assay for transpose accessible chromatin sequencing (ATAC-seq). Chromatin accessible regions were used to identify regulatory RNA expression in more than 700 samples from newly diagnosed patients in the Multiple Myeloma Research Foundation CoMMpass trial (NCT01454297). RESULTS: Gene expression and chromatin accessibility of cryopreserved myeloma recapitulated that of freshly isolated samples. ATAC-seq performed on a series of biobanked specimens identified thousands of chromatin accessible regions with hundreds being highly coordinated with gene expression. More than 4,700 of these chromatin accessible regions were transcribed in newly diagnosed myelomas from the CoMMpass trial. Regulatory element activity alone recapitulated myeloma gene expression subtypes, and in particular myeloma subtypes with immunoglobulin heavy chain translocations were defined by transcription of distal regulatory elements. Moreover, enhancer activity predicted oncogene expression implicating gene regulatory mechanisms in aggressive myeloma. CONCLUSIONS: These data demonstrate the feasibility of using biobanked specimens for retrospective studies of the myeloma epigenome and illustrate the unique enhancer landscapes of myeloma subtypes that are coupled to gene expression and disease progression.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica , Mieloma Múltiplo/genética , RNA/genética , Progressão da Doença , Epigenoma , Estudos de Viabilidade , Humanos , Prognóstico , Análise de Sequência de RNA
16.
J Clin Oncol ; 38(17): 1928-1937, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298201

RESUMO

PURPOSE: The combination of lenalidomide, bortezomib, and dexamethasone (RVD) is a highly effective and convenient induction regimen for both transplantation-eligible and -ineligible patients with myeloma. Here, we present the largest cohort of patients consecutively treated with RVD induction therapy followed by risk-adapted maintenance therapy with the longest follow-up and important information on long-term outcomes. PATIENTS AND METHODS: We describe 1,000 consecutive patients with newly diagnosed myeloma treated with RVD induction therapy from January 2007 until August 2016. Demographic and clinical characteristics and outcomes data were obtained from our institutional review board-approved myeloma database. Responses and progression were evaluated per International Myeloma Working Group Uniform Response Criteria. RESULTS: The overall response rate was 97.1% after induction therapy and 98.5% after transplantation, with 89.9% of patients achieving a very good partial response (VGPR) or better and 33.3% achieving stringent complete response after transplantation at a median follow-up time of 67 months. The estimated median progression-free survival time was 65 months (95% CI, 58.7 to 71.3 months) for the entire cohort, 40.3 months (95% CI, 33.5 to 47 months) for high-risk patients, and 76.5 months (95% CI, 66.9 to 86.2 months) for standard-risk patients. The median overall survival (OS) time for the entire cohort was 126.6 months (95% CI, 113.3 to 139.8 months). The median OS for high-risk patients was 78.2 months (95% CI, 62.2 to 94.2 months), whereas it has not been reached for standard-risk patients. Five-year OS rates for high-risk and standard-risk patients were 57% and 81%, respectively, and the 10-year OS rates were 29% and 58%, respectively. CONCLUSION: RVD is an induction regimen that delivers high response rates (VGPR or better) in close to 90% of patients after transplantation, and risk-adapted maintenance can deliver unprecedented long-term outcomes. This study includes the largest cohort of patients treated with RVD reported to date with long follow-up and demonstrates the ability of 3-drug induction regimens in patients with newly diagnosed multiple myeloma to result in a substantial survival benefit.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Idoso , Bortezomib/administração & dosagem , Estudos de Coortes , Dexametasona/administração & dosagem , Feminino , Seguimentos , Humanos , Quimioterapia de Indução , Lenalidomida/administração & dosagem , Quimioterapia de Manutenção , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Taxa de Sobrevida
17.
Nat Commun ; 11(1): 1228, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144272

RESUMO

The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the 'primed' state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 14/genética , Resistencia a Medicamentos Antineoplásicos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mutação , Oxirredução/efeitos dos fármacos , Seleção de Pacientes , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Tenoiltrifluoracetona/farmacologia , Translocação Genética
19.
Blood Cancer J ; 9(12): 94, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767829

RESUMO

Gain of chromosome 1q (+1q) is commonly identified in multiple myeloma and has been associated with inferior outcomes. However, the prognostic implication of +1q has not been evaluated in the setting of standard triplet regimens. We retrospectively analyzed 201 consecutive patients with newly diagnosed myeloma who received induction with lenalidomide, bortezomib, and dexamethasone (RVD) and were tested for +1q at diagnosis by fluorescent in-situ hybridization. Patients with +1q (n = 94), compared to those without +1q (n = 107), had shorter median progression-free survival (PFS) (41.9 months vs 65.1 months, p = 0.002, HR = 1.90) and overall survival (median not reached (NR) for either arm, p = 0.003, HR 2.69). In subgroup analyses, patients with co-occurring +1q and t(4;14), t(14;16) or del(17p) or with 4 or more copies of 1q had significantly worse PFS (25.1 months and 34.6 months, p < 0.001 and p = 0.0063, respectively), whereas patients with three copies and no other high-risk cytogenetic abnormalities had no significant difference in PFS. These data suggest that when treated with RVD induction, patients with +1q should be considered at very high risk for early progression in multiple myeloma when ≥4 copies are detected or in the context of other high-risk cytogenetic abnormalities.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 1 , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/administração & dosagem , Variações do Número de Cópias de DNA , Dexametasona/administração & dosagem , Progressão da Doença , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Lenalidomida/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Resultado do Tratamento
20.
Front Immunol ; 10: 1121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231360

RESUMO

B cell activation and differentiation yields plasma cells with high affinity antibodies to a given antigen in a time-frame that allows for host protection. Although the end product is most commonly humoral immunity, the rapid proliferation and somatic mutation of the B cell receptor also results in oncogenic mutations that cause B cell malignancies including plasma cell neoplasms such as multiple myeloma. Myeloma is the second most common hematological malignancy and results in over 100,000 deaths per year worldwide. The genetic alterations that occur in the germinal center, however, are not sufficient to cause myeloma, but rather impart cell proliferation potential on plasma cells, which are normally non-dividing. This pre-malignant state, referred to as monoclonal gammopathy of undetermined significance or MGUS, provides the opportunity for further genetic and epigenetic alterations eventually resulting in a progressive disease that becomes symptomatic. In this review, we will provide a brief history of clonal gammopathies and detail how some of the key discoveries were interwoven with the study of plasma cells. We will also review the genetic and epigenetic alterations discovered over the past 25 years, how these are instrumental to myeloma pathogenesis, and what these events teach us about myeloma and plasma cell biology. These data will be placed in the context of normal B cell development and differentiation and we will discuss how understanding the biology of plasma cells can lead to more effective therapies targeting multiple myeloma.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Plasmócitos/imunologia , Animais , Diferenciação Celular , Progressão da Doença , Humanos , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Mieloma Múltiplo/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...