Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0370923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451227

RESUMO

Rotavirus A (RVA) is a major cause of acute gastroenteritis globally that is classically genotyped by its two immunodominant outer capsid proteins, VP7 (G-) and VP4 (P-). Recent evidence suggests that the reassortant equine-like G3P[8] strain played a substantial role in RVA transmission in Brazil since 2015. To understand its global emergence and dissemination in Brazilian territory, stool samples collected from 11 Brazilian states (n = 919) were genotyped by RT-qPCR and proceeded to sequence the VP7 gene (n = 102, 79 being newly generated) of the G3P[8] samples with pronounced viral loads. Our phylogenetic genotyping showed that G3P[8] became the dominant strain in Brazil between 2017 and 2020, with equine-like variants representing 75%-100% of VP7 samples in this period. A Bayesian discrete phylogeographic analysis strongly suggests that the equine-like G3P[8] strain originated in Asia during the early 2010s and subsequently spread to Europe, the Caribbean, and South America. Multiple introductions were detected in Brazil between 2014 and 2017, resulting in five national clusters. The reconstruction of the effective population size of the largest Brazilian cluster showed an expansion until 2017, followed by a plateau phase until 2019 and subsequent contraction. Our study also supports that most mutations fixed during equine-like G3P[8] evolution were synonymous, suggesting that adaptive evolution was not an important driving force during viral dissemination in humans, potentially increasing its susceptibility to acquired immunity. This research emphasizes the need for comprehensive rotavirus genomic surveillance that allows close monitoring of its ever-shifting composition and informs more effective public health policies.IMPORTANCEOur original article demonstrated the origin and spread in a short time of equine-like G3P[8] in Brazil and the world. Due to its segmented genome, it allows numerous mechanisms including genetic drift and reassortment contribute substantially to the genetic diversity of rotavirus. Although the effectiveness and increasing implementation of vaccination have not been questioned, a matter of concern is its impact on the emergence of escape mutants or even the spread of unusual strains of zoonotic transmission that could drive epidemic patterns worldwide. This research emphasizes the need for comprehensive rotavirus genomic surveillance, which could facilitate the formulation of public policies aimed at preventing and mitigating its transmission.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Cavalos/genética , Humanos , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/genética , Brasil/epidemiologia , Filogenia , Teorema de Bayes , Genoma Viral , Genótipo
2.
Viruses ; 15(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37631962

RESUMO

Rotavirus A (RVA) remains a leading cause of acute gastroenteritis (AGE) hospitalizations in children worldwide. During the COVID-19 pandemic, a reduction in vaccination coverage in Brazil and elsewhere was observed, and some reports have demonstrated a reduction in AGE notifications during the pandemic. This study aims to investigate the diversity and prevalence of RVA genotypes in children and adults presenting with AGE symptoms in Brazil during the COVID-19 pandemic between 2020 and 2022. RVA was screened using RT-qPCR; then, G and P genotypes were characterized using one-step multiplex RT-PCR. A total of 2173 samples were investigated over the three-year period, and we detected RVA in 7.7% of samples (n = 167), being 15.5% in 2020, 0.5% in 2021, and 13.8% in 2022. Higher RVA prevalence was observed in the Northeastern region (19.3%) compared to the Southeastern (6.1%) and Southern regions (5.5%). The most affected age group was children aged between 0 and 6 months old; however, this was not statistically significant. Genotyping and phylogenetic analysis identified the emergence of G6P[8] during the period; moreover, it was detected in 10.6% of samples in 2020 and in 83.5% in 2022. In contrast, the prevalence of G3P[8], the previous dominant genotype, decreased from 72.3% in 2020 to 11.3% in 2022. We also identified unusual strains, such as G3P[9] and G9P[4], being sporadically detected during the period. This is the first report on the molecular epidemiology and surveillance of RVA during the COVID-19 pandemic period in Brazil. Our study provides evidence for the importance of maintaining high and sustainable levels of vaccine coverage to protect against RVA disease. Furthermore, it highlights the need to maintain nationwide surveillance in order to monitor future trends and changes in the epidemiology of RVA in Brazil.


Assuntos
COVID-19 , Rotavirus , Adulto , Criança , Humanos , Recém-Nascido , Lactente , Rotavirus/genética , Brasil/epidemiologia , COVID-19/epidemiologia , Pandemias , Filogenia , Genótipo
3.
Virology ; 577: 74-83, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36323046

RESUMO

Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.

4.
Viruses ; 14(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36366459

RESUMO

Viral bivalve contamination is a recognized food safety hazard. Therefore, this study investigated the detection rates, seasonality, quantification, and genetic diversity of enteric viruses in bivalve samples (mussels and oysters). We collected 97 shellfish samples between March 2018 and February 2020. The screening of samples by qPCR or RT-qPCR revealed the detection of norovirus (42.3%), rotavirus A (RVA; 16.5%), human adenovirus (HAdV; 24.7%), and human bocavirus (HBoV; 13.4%). There was no detection of hepatitis A virus. In total, 58.8% of shellfish samples tested positive for one or more viruses, with 42.1% of positive samples contaminated with two or more viruses. Norovirus showed the highest median viral load (3.3 × 106 GC/g), followed by HAdV (median of 3.5 × 104 GC/g), RVA (median of 1.5 × 103 GC/g), and HBoV (median of 1.3 × 103 GC/g). Phylogenetic analysis revealed that norovirus strains belonged to genotype GII.12[P16], RVA to genotype I2, HAdV to types -C2, -C5, and -F40, and HBoV to genotypes -1 and -2. Our results demonstrate the viral contamination of bivalves, emphasizing the need for virological monitoring programs to ensure the quality and safety of shellfish for human consumption and as a valuable surveillance tool to monitor emerging viruses and novel variants.


Assuntos
Adenovírus Humanos , Bivalves , Infecções por Enterovirus , Enterovirus , Norovirus , Animais , Humanos , Brasil/epidemiologia , Filogenia , Norovirus/genética , Enterovirus/genética
5.
Pathogens ; 9(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605014

RESUMO

Rotavirus A (RVA) vaccines succeeded in lowering the burden of acute gastroenteritis (AGE) worldwide, especially preventing severe disease and mortality. In 2019, Brazil completed 13 years of RVA vaccine implementation (Rotarix™) within the National Immunization Program (NIP), and as reported elsewhere, the use of Rotarix™ in the country has reduced childhood mortality and morbidity due to AGE. Even though both marketed vaccines are widely distributed, the surveillance of RVA causing AGE and the monitoring of circulating genotypes are important tools to keep tracking the epidemiological scenario and vaccines impact. Thus, our study investigated RVA epidemiological features, viral load and G and P genotypes circulation in children and adults presenting AGE symptoms in eleven states from three out of five regions in Brazil. By using TaqMan®-based one-step RT-qPCR, we investigated a total of 1536 stool samples collected from symptomatic inpatients, emergency department visits and outpatients from January 2018 to December 2019. G and P genotypes of RVA-positive samples were genetically characterized by multiplex RT-PCR or by nearly complete fragment sequencing. We detected RVA in 12% of samples, 10.5% in 2018 and 13.7% in 2019. A marked winter/spring seasonality was observed, especially in Southern Brazil. The most affected age group was children aged >24-60 months, with a positivity rate of 18.8% (p < 0.05). Evaluating shedding, we found a statistically lower RVA viral load in stool samples collected from children aged up to six months compared to the other age groups (p < 0.05). The genotype G3P[8] was the most prevalent during the two years (83.7% in 2018 and 65.5% in 2019), and nucleotide sequencing of some strains demonstrated that they belonged to the emergent equine-like G3P[8] genotype. The dominance of an emergent genotype causing AGE reinforces the need for continuous epidemiological surveillance to assess the impact of mass RVA immunization as well as to monitor the emergence of novel genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...