Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2404738121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141353

RESUMO

Most mammalian cells have molecular circadian clocks that generate widespread rhythms in transcript and protein abundance. While circadian clocks are robust to fluctuations in the cellular environment, little is known about the mechanisms by which the circadian period compensates for fluctuating metabolic states. Here, we exploit the heterogeneity of single cells both in circadian period and a metabolic parameter-protein stability-to study their interdependence without the need for genetic manipulation. We generated cells expressing key circadian proteins (CRYPTOCHROME1/2 (CRY1/2) and PERIOD1/2 (PER1/2)) as endogenous fusions with fluorescent proteins and simultaneously monitored circadian rhythms and degradation in thousands of single cells. We found that the circadian period compensates for fluctuations in the turnover rates of circadian repressor proteins and uncovered possible mechanisms using a mathematical model. In addition, the stabilities of the repressor proteins are circadian phase dependent and correlate with the circadian period in a phase-dependent manner, in contrast to the prevailing model.


Assuntos
Ritmo Circadiano , Criptocromos , Proteínas Circadianas Period , Análise de Célula Única , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Criptocromos/genética , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Relógios Circadianos/fisiologia , Humanos , Camundongos , Estabilidade Proteica
2.
Commun Biol ; 6(1): 1196, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001355

RESUMO

Cells must accurately and quickly detect DNA damage through a set of checkpoint mechanisms that enable repair and control proliferation. Heterogeneous levels of cellular stress and noisy signaling processes can lead to phenotypic variability but little is known about their role in underlying proliferation heterogeneity. Here we study two previously published single cell datasets and find that cells encode heterogeneous levels of endogenous and exogenous DNA damage to shape proliferation heterogeneity at the population level. Using a comprehensive time series analysis of short- and long-term signaling dynamics of p53 and p21, we show that DNA damage levels are quantitatively translated into p53 and p21 signal parameters in a gradual manner. Analyzing instantaneous proliferation and signaling differences among equally-radiated cells, we identify time-localized changes in the period of p53 pulses that drive cells out of a low proliferative state. Our findings suggest a novel role of the p53-p21 network in quantitatively encoding DNA damage strength and fine-tuning proliferation trajectories.


Assuntos
Dano ao DNA , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Transdução de Sinais , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...