Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Haematol ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402867

RESUMO

INTRODUCTION: Targeting the B cell receptor (BCR) pathway via ibrutinib, a specific inhibitor of Bruton's tyrosine kinase, has shown marked clinical efficacy in treatment of patients with chronic lymphocytic leukemia (CLL), thus becoming a preferred first line option independent of risk factors. However, acquired resistance to ibrutinib poses a major clinical problem and requires the development of novel treatment combinations to increase efficacy and counteract resistance development and clinical relapse rates. CASE PRESENTATION: In this study, we performed exome and transcriptome analyses of an ibrutinib resistant CLL patient in order to investigate genes and expression patterns associated with ibrutinib resistance. Here we provide evidence that ibrutinib resistance can be attributed to aberrant mammalian target of rapamycin (MTOR) signaling. CONCLUSION: Thus, our study proposes that combined use of MTOR inhibitors with ibrutinib could be a possible option to overcome therapy resistance in ibrutinib treated patients.

2.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206229

RESUMO

The reinvigoration of anti-cancer immunity by immune checkpoint therapies has greatly improved cancer treatment. In chronic lymphocytic leukemia (CLL), patients as well as in the Tcl1 mouse model for CLL, PD1-expressing, exhausted T cells significantly expand alongside CLL development; nevertheless, PD1 inhibition has no clinical benefit. Hence, exhausted T cells are either not activatable by simple PD1 blocking in CLL and/or only an insufficient number of exhausted T cells are CLL-specific. In this study, we examined the latter hypothesis by exploiting the Tcl1 transgenic CLL mouse model in combination with TCR transgene expression specific for a non-cancer antigen. Following CLL tumor development, increased PD1 levels were detected on non-CLL specific T cells that seem dependent on the presence of (tumor-) antigen-specific T cells. Transcriptome analysis confirmed a similar exhaustion phenotype of non-CLL specific and endogenous PD1pos T cells. Our results indicate that in the CLL mouse model, a substantial fraction of non-CLL specific T cells becomes exhausted during disease progression in a bystander effect. These findings have important implications for the general efficacy assessment of immune checkpoint therapies in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/imunologia , Camundongos , Camundongos Transgênicos
3.
Cancers (Basel) ; 13(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073525

RESUMO

Adaptive somatic mutations conferring treatment resistance and accelerated disease progression is still a major problem in cancer therapy. Additionally in CLL, patients receiving novel, efficient drugs frequently become treatment refractory and eventually relapse. Activation-induced deaminase (AID) is a cytosine deaminase that catalyzes somatic hypermutation of genomic DNA at the immunoglobulin locus in activated B cells. As considerable off-target mutations by AID have been discerned in chronic lymphocytic leukemia, it is essential to investigate to which extent these mutations contribute to disease progression to estimate whether AID inhibition could counteract drug resistance mechanisms. In this study, we examined the TCL1 mouse model for CLL on an AID pro- and deficient background by comparing disease development and mutational landscapes. We provide evidence that AID contributes to the acquisition of somatic cancer-specific mutations also in the TCL1 model and accelerates CLL development particularly in the transplant setting. We conclude that AID is directly determining the fitness of the CLL clone, which prompts further studies to assess the effect of AID inhibition on the occurrence of drug resistance.

5.
Blood ; 134(20): 1717-1729, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31537531

RESUMO

Chronic lymphocytic leukemia (CLL) is a heterogenous disease that is highly dependent on a cross talk of CLL cells with the microenvironment, in particular with T cells. T cells derived from CLL patients or murine CLL models are skewed to an antigen-experienced T-cell subset, indicating a certain degree of antitumor recognition, but they are also exhausted, preventing an effective antitumor immune response. Here we describe a novel mechanism of CLL tumor immune evasion that is independent of T-cell exhaustion, using B-cell-specific deletion of the transcription factor IRF4 (interferon regulatory factor 4) in Tcl-1 transgenic mice developing a murine CLL highly similar to the human disease. We show enhanced CLL disease progression in IRF4-deficient Tcl-1 tg mice, associated with a severe downregulation of genes involved in T-cell activation, including genes involved in antigen processing/presentation and T-cell costimulation, which massively reduced T-cell subset skewing and exhaustion. We found a strong analogy in the human disease, with inferior prognosis of CLL patients with low IRF4 expression in independent CLL patient cohorts, failed T-cell skewing to antigen-experienced subsets, decreased costimulation capacity, and downregulation of genes involved in T-cell activation. These results have therapeutic relevance because our findings on molecular mechanisms of immune privilege may be responsible for the failure of immune-therapeutic strategies in CLL and may lead to improved targeting in the future.


Assuntos
Linfócitos B/imunologia , Deleção de Genes , Fatores Reguladores de Interferon/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Evasão Tumoral , Animais , Linfócitos B/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/imunologia , Leucemia Linfocítica Crônica de Células B/genética , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...