Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1430794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39479501

RESUMO

Introduction: Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method: In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion: Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.

3.
RSC Med Chem ; 15(6): 2098-2113, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911169

RESUMO

Background: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from in silico analysis in T2DM animals. Methods: A T2DM rat model was established by combining a high-fat diet (HFD) and streptozotocin (STZ). After four weeks from T2DM induction, HFD/STZ-induced T2DM rats were subdivided into an untreated group (T2DM group) and three treated groups which received 10, 20, or 30 mg per kg of R. rosea daily for 4 weeks. Results: The study found that rosavin can affect the cGAS-STING pathway-related RNA signatures by decreasing the expressions of ZBP1, STING1, DDX58, and miR-1976 while increasing the lncRNA AC074117.2 level in the liver, kidney, and adipose tissues. Rosavin prevented further weight loss, reduced serum insulin and glucose, improved insulin resistance and the lipid panel, and mitigated liver and kidney damage compared to the untreated T2DM group. The treatment also resulted in reduced inflammation levels and improved autophagy manifested by decreased immunostaining of TNF-α and increased immunostaining of LC3B in the liver and kidneys of the treated T2DM rats. Conclusion: Rosavin has shown potential in attenuating T2DM, inhibiting inflammation in the liver and kidneys, and improving metabolic disturbances in a T2DM animal model. The observed effect was linked to the activation of autophagy and suppression of the cGAS-STING pathway.

4.
Front Endocrinol (Lausanne) ; 15: 1384984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854687

RESUMO

Introduction: With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. Method: In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. Results and discussion: Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Aprendizado de Máquina , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Ratos Sprague-Dawley , Biomarcadores , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Resistência à Insulina , Quercetina/farmacologia , Quercetina/uso terapêutico , Ácidos Cafeicos
5.
Int J Biol Macromol ; 273(Pt 2): 133072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885861

RESUMO

Plants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.


Assuntos
Glutationa Transferase , Controle de Mosquitos , Extratos Vegetais , Animais , Culex/efeitos dos fármacos , Culex/enzimologia , Glutationa Transferase/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Simulação de Acoplamento Molecular , Controle de Mosquitos/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Int Immunopharmacol ; 128: 111533, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271813

RESUMO

BACKGROUND: Treatment of diabetic neuropathic pain does not change the natural history of neuropathy. Improved glycemic control is the recommended treatment in these cases, given that no specific treatment for the underlying nerve damage is available, so far. In the present study, the potential neuroprotective effect of pentoxifylline in streptozotocin (50 mg/kg) induced diabetic neuropathy in rats was investigated. METHODS: Pentoxifylline was administered at doses equivalent to 50, 100 & 200 mg/kg, in drinking water, starting one week after streptozotocin injection and for 7 weeks. Mechanical allodynia, body weight and blood glucose level were assessed weekly. Epidermal thickness of the footpad skin, and neuroinflammation and vascular alterations markers were assessed. RESULTS: Tactile allodynia was less in rats that received pentoxifylline at doses of 100 and 200 mg/kg (60 % mechanical threshold increased by 48 % and 60 %, respectively). The decrease in epidermal thickness of footpad skin was almost completely prevented by the same doses. This was associated with a decrease in spinal tumor necrosis factor alpha (TNFα) and nuclear factor kappa B levels and a decrease in microglial ionized calcium binding adaptor molecule 1 immunoreactivity, compared to the control diabetic group. In sciatic nerve, there was decrease in TNF-α and vascular endothelial growth factor levels and intercellular adhesion molecule immunoreactivity. CONCLUSION: Pentoxifylline showed a neuroprotective effect in streptozotocin-induced diabetic neuropathy, which was associated with a suppression of both the inflammatory and vascular pathogenic pathways that was not associated with a hypoglycemic effect. Thus, it may represent a potential neuroprotective drug for diabetics.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Fármacos Neuroprotetores , Pentoxifilina , Ratos , Animais , Neuropatias Diabéticas/tratamento farmacológico , Pentoxifilina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estreptozocina , Fator A de Crescimento do Endotélio Vascular , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Fator de Necrose Tumoral alfa
7.
J Pak Med Assoc ; 73(Suppl 4)(4): S179-S183, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37482854

RESUMO

Objectives: To investigate the relation involving soluble interleukin-2 receptor, interleukin-6 and interleukin-10 in hospitalised patients with severe coronavirus disease-2019 infection. Method: This single-centre cohort study was conducted at the Kafrelshiekh University Hospital, Egypt, from January to June 2022, and included all patients of either gender who were hospitalised with severe infection with the coronavirus disease-2019 isolation ward. Chemiluminescence immunoassay method was used to measure levels of procalcitonin, ferritin, soluble interleukin-2 receptor, interleukin-6 and interleukin-10. Data was analysed using SPSS version. 25. RESULTS: Of the 250 patients with median age 57.5 years (interquartile range: 45.8-66.0 years), 147(59%) were males and 103(41%) were females. Of them, 102(40.8%) patients died; 68(66.7%) males, 34(33.3%) females, median age 60.0 years (interquartile range: 48.8-70.0). Among the 148(59.2%) survivors, 79(53.4%) were males and 69(46.6%) were females, while the overall median age was 55.0 years (interquartile range: 41.5-65.8 years). The survivors had significantly lower levels of soluble interleukin-2 receptor, interleukin-6 and interleukin-10 (p<0.001). Correlation analysisidentified significant positive correlation between IL-2R, IL-6 and IL-10 levels and almost all the inflammatory and coagulation parameters, including C-reactive protein, lactate dehydrogenase, procalcitonin, ferritin, D-dimer and fibrinogen (p<0.05). CONCLUSIONS: Elevated levels of soluble interleukin-2 receptor, interleukin-6 and interleukin-10 were found to be associated with greater risk of mortality in coronavirus disease-2019 patients.


Assuntos
COVID-19 , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Interleucina-6 , Interleucina-10/metabolismo , Estudos de Coortes , Pró-Calcitonina/metabolismo , Interleucina-2/metabolismo , Receptores de Interleucina-2/metabolismo , Proteína C-Reativa/metabolismo , Ferritinas , Receptores de Interleucina-6/metabolismo , Biomarcadores , Estudos Retrospectivos
9.
Fundam Clin Pharmacol ; 37(4): 753-768, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36868872

RESUMO

The combined angiotensin receptor neprilysin inhibitor is a promising cardioprotective pharmacological agent. This study investigated the beneficial effects of thiorphan (TH)/irbesartan (IRB), in myocardial ischemia-reperfusion (IR) injury, compared to each of nitroglycerin and carvedilol. Male Wistar rats were divided into five groups (10 rats/group): Sham, untreated I/R, TH/IRB + IR (0.1/10 mg/kg), nitroglycerin + IR (0.2 mg/kg), and carvedilol + IR (10 mg/kg). Mean arterial blood pressure, cardiac functions and arrhythmia incidence, duration and score were assessed. Cardiac levels of creatine kinase-MB (CK-MB), oxidative stress, endothelin-1, ATP, Na+ /K+ ATPase pump activity and mitochondria complexes activities were measured. Histopathological examination, Bcl/Bax immunohistochemistry studies and electron microscopy examination of left ventricle were performed. TH/IRB preserved the cardiac functions and mitochondrial complexes activities, mitigated cardiac damage, reduced oxidative stress and arrhythmia severity, improved the histopathological changes and decreased cardiac apoptosis. TH/IRB showed a comparable effect to each of nitroglycerin and carvedilol in alleviating the IR injury consequences. TH/IRB showed significant preservation of mitochondrial complexes activity I and II compared to nitroglycerin. TH/IRB significantly increased LVdP/dtmax and decreased oxidative stress, cardiac damage and endothelin-1 along with increasing the ATP content, Na+ /K+ ATPase pump activity and mitochondrial complexes activity when compared to carvedilol. TH/IRB showed a cardioprotective effect in reducing IR injury that is comparable to each of nitroglycerin and carvedilol that could be explained in part by its ability to preserve mitochondrial function, increase ATP, decrease oxidative stress as well as endothelin 1.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Carvedilol/farmacologia , Irbesartana , Tiorfano/farmacologia , Nitratos , Neprilisina , Receptores de Angiotensina , Nitroglicerina , Endotelina-1 , Ratos Wistar , Cardiotônicos/farmacologia , Anti-Hipertensivos/uso terapêutico , Adenosina Trifosfatases , Trifosfato de Adenosina
10.
Fundam Clin Pharmacol ; 37(1): 31-43, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35830481

RESUMO

Mitochondria-mediated apoptosis plays a critical role in myocardial ischemia reperfusion (IR) injury and causes a negative impact on cardiac efficiency and function. The combined angiotensin receptor-neprilysin inhibitor (ARNI) is a promising cardioprotective pharmacological agent that could rescue the heart from IR injury. This study investigated the cardioprotective effect of thiorphan (TH) in combination with three different doses of irbesartan (IRB) on myocardial IR injury and detected the most effective dose combination. Male Wistar rats were used and divided into five groups (10 rats/group): (I) Sham, (II) ischemia-reperfusion I/R, (III) TH/IRB + IR (0.1/5 mg/kg), (IV) TH/IRB + IR (0.1/10 mg/kg), and (V) TH/IRB + IR (0.1/15 mg/kg) groups. Thiorphan and irbesartan were injected intraperitoneally 15 min before IR induction. Mean arterial blood pressure, left ventricular end diastolic pressure (LVEDP), left ventricular maximum rate of pressure (LVdp/dtmax ), and cardiac levels of creatine kinase-MB, malondialdehyde, superoxide dismutase, and endothelin-1 were measured. Cardiac mitochondria complexes activities, histopathological examination of myocardial tissues, immunohistochemistry studies for myocardial apoptosis (Bax and Bcl-2), and electron microscopy examination of left ventricle were performed. TH/IRB combination preserved cardiac functions and mitochondria complex activities and mitigated cardiac damage, oxidative stress, and apoptosis following IR. Also, there was an evident improvement in histopathological changes and electron microscopy examination of left ventricle compared with I/R group. TH/IRB in a dose of 0.1/10 mg/kg showed significant improvement compared with the other treated groups. Thiorphan/irbesartan improved cardiac functions following IR injury. This could be explained by the reported improvement of mitochondria complex activities and reduction of oxidative stress, endothelin-1, and apoptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Irbesartana/farmacologia , Irbesartana/uso terapêutico , Tiorfano/uso terapêutico , Neprilisina , Receptores de Angiotensina/uso terapêutico , Ratos Wistar , Endotelina-1/uso terapêutico , Miocárdio/patologia , Cardiotônicos/farmacologia
11.
J Investig Med ; 70(7): 1466-1471, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35940732

RESUMO

Coagulopathy, cytokine release, platelet hyperactivity and endothelial activation are regarded as potential major contributors to COVID-19 morbidity. Complement activation might provide a bridge linking these factors in severe COVID-19 illness. In this study, we investigated the prognostic significance of selected complement factors in hospitalized patients with severe COVID-19 infection. The study included 300 hospitalized adults with severe COVID-19 infection. Complement factors (C3, C3a, C4, sC5b-9) were assessed by commercial ELISA kits. Outcome parameters included mortality, intensive care unit admission and duration of hospital stay. It was found that survivors had significantly higher serum C3 (median (IQR): 128.5 (116.3-141.0) mg/dL vs 98.0 (70.0-112.8) mg/dL, p<0.001) and C4 (median (IQR): 36.0 (30.0-42.0) mg/dL vs 31.0 (26.0-35.0) mg/dL, p<0.001) levels when compared with non-survivors. On the other hand, it was shown that survivors had significantly lower C3a (median (IQR): 203.0 (170.3-244.0) ng/mL vs 385.0 (293.0-424.8) ng/mL, p<0.001) and sC5b-9 (median (IQR): 294.0 (242.0-318.8) ng/mL vs 393.0 (342.0-436.5) ng/mL, p<0.001) levels when compared with non-survivors. Multivariate logistic regression analysis identified C3a (OR: 0.97 (95% CI 0.96 to 0.99), p<0.001) and C4 (OR: 0.92 (95% CI 0.86 to 0.98), p=0.011) levels as significant predictors of mortality. In conclusion, serum levels of complement factors are related to mortality in severely ill patients with COVID-19.


Assuntos
COVID-19 , Adulto , Citocinas , Hospitalização , Humanos , Fatores Imunológicos , Unidades de Terapia Intensiva , Prognóstico
12.
Curr Issues Mol Biol ; 44(4): 1677-1687, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35723373

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of malignancy in the liver. Autophagy was found to have a significant effect in controlling HCC. Anthocyanins, which are naturally occurring pigments in a variety of fruits and vegetables, have been thoroughly documented to be involved in a variety of bioactive activities and are widely employed for their antioxidant capabilities. Cyanidin-3-glucoside (C3G) extracted from Morus alba L. has promising antioxidant and anti-tumour activities. The current study aims to examine the protective action of C3G against hepatocellular carcinoma through the investigation of the autophagy protein ATG16L1 expression along with its related RNA molecules (hsa_circ_0001345 and miRNA106b) in Wistar rats. In vivo precancerous lesions (PCL) were induced using diethylnitrosamine (DEN) and acetamidofluorene (2-AAF). Rats were treated with C3G (10, 15, and 20 mg/kg; 4 times weekly) for 112 days (16 weeks). Liver function tests, alfa fetoprotein, ATG16L1 expression, hsa_circ_0001345, and miRNA106b differential expression were examined. Liver sections were examined by histological and immunohistochemical approaches. The current study's findings indicated that C3G administration protects against the negative effects of DEN-2-AAF on liver functions and liver histopathological sections, which nominated C3G as a potential prophylactic agent against HCC.

13.
Mar Drugs ; 20(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35049918

RESUMO

Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids-docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6-as well as three ceramides-A (1), B (2), and C (3)-with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Ceramidas/farmacologia , Rodófitas , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Organismos Aquáticos , Ascite/patologia , Carcinoma de Ehrlich/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Ceramidas/química , Ceramidas/uso terapêutico , Modelos Animais de Doenças , Humanos , Oceano Índico , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular
14.
J Biomol Struct Dyn ; 40(20): 9636-9647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34074230

RESUMO

The chemical constituents of the nonpolar fractions of the bamboo shoot skin Phyllostachys heterocycla were extensively studied. The phytochemical study was divided into two parts: the first deals with isolation of the chemical constituents using different chromatographic techniques that resulted in isolation of four compounds. The chemical structures of the pure isolated compounds were elucidated using different spectroscopic data. The second part deals with identification of the rest of the constituents using the GC technique. Additionally, both crude extract and the pure isolated compounds were investigated for cytotoxic activity. One of the isolated compounds; namely glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM), and it remarkably stimulated apoptotic breast cancer cell death with 31.6-fold (16.13% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Moreover, the identified compounds especially 1 were found to have high binding affinity towards both TPK and VEGFR-2 through the molecular docking studies which highlight its mode of action. HighlightsChemical profiling of Phyllostachys heterocycla bark nonpolar extract was fully identified.Glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM).Glyceryl 1-monopalmitate significantly stimulated apoptotic breast cancer cell death with 31.6-fold by arresting cell cycle at G2/M and preG1 phases.Molecular docking simulation showed good binding affinities towards TPK and VEGFR-2 proteins.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Extratos Vegetais , Feminino , Humanos , Antineoplásicos/química , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Casca de Planta/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Extratos Vegetais/farmacologia , Poaceae/química
15.
Lab Med ; 53(1): 58-64, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34350970

RESUMO

OBJECTIVE: To assess the circulating micro-RNA-150 (miR-150) expression in patients with chronic myeloid leukemia (CML) in relation to imatinib response. METHODS: Sixty patients with CML and 20 age- and sex-matched control subjects were enrolled. Circulating miR-150 levels were assessed by quantitative real-time polymerase chain reaction on days 0, 14, and 90 of imatinib therapy for patients and once for control subjects. RESULTS: The baseline miR-150 expression was significantly lower in patients with CML than in control subjects with subsequent elevation at 14 and 90 days after the start of imatinib treatment. Early treatment response (ETR) at 90 days was the main study outcome. The miR-150 expression had a significantly higher level in patients with CML with ETR. On multivariate analysis, miR-150 on day 14 was significantly related to ETR in patients with CML with predictive efficacy (area under the curve = 0.838, 72.9% sensitivity, and 84.2% specificity). CONCLUSION: We found that miR-150 expression on day 14 of imatinib treatment is a useful early predictive candidate for imatinib response in patients with CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/genética
16.
Metabolites ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940574

RESUMO

Coronavirus disease 2019 (COVID-19) is the disease caused by the virus SARS-CoV-2 responsible for the ongoing pandemic which has claimed the lives of millions of people. This has prompted the scientific research community to act to find treatments against the SARS-CoV-2 virus that include safe antiviral medicinal compounds. The edible green algae U. lactuca. is known to exhibit diverse biological activities such as anti-influenza virus, anti-Japanese encephalitis virus, immunomodulatory, anticoagulant, antioxidant and antibacterial activities. Herein, four new ceramides in addition to two known ones were isolated from Ulva lactuca. The isolated ceramides, including Cer-1, Cer-2, Cer-3, Cer-4, Cer-5 and Cer-6 showed promising antiviral activity against SARS-CoV-2 when investigated using in silico approaches by preventing its attachment to human cells and/or inhibiting its viral replication. Cer-4 and Cer-5 were the most effective in inhibiting the human angiotensin converting enzyme (hACE)-spike protein complex which is essential for the virus to enter the human host. In addition to this, Cer-4 also showed an inhibition of the SARS-CoV-2 protease (Mpro) that is responsible for its viral replication and transcription. In this study, we also used liquid chromatography coupled to electrospray ionization high-resolution mass spectroscopy (LC-ESI-HRMS) to identify several metabolites of U. lactuca, including metabolites such as fatty acids, their glyceride derivatives, terpenoids, sterols and oxysterols from the organic extract. Some of these metabolites also possessed promising antiviral activity, as previously reported.

17.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34829584

RESUMO

Cynanchum acutum L. is a climbing vine that belongs to the family Apocynaceae. Using different chromatographic techniques, seven compounds were isolated from the methanolic extract of the plant. The isolated compounds include six flavonoid compounds identified as rutin (1), quercetin-3-O-neohesperidoside (2), quercetin-3-O-ß-galactoside (3), isoquercitrin (4), quercetin (5), and kaempferol 3-O-ß-glucoside (6), in addition to a coumarin, scopoletin (7). The structures of the compounds were elucidated based on 1D NMR spectroscopy and high-resolution mass spectrometry (HR-MS), and by comparison with data reported in the literature. The first five compounds were selected for in vivo investigation of their anti-inflammatory and antioxidant properties in a rat model of type 2 diabetes. All tested compounds significantly reduced oxidative stress and increased erythrocyte lysate levels of antioxidant enzymes, along with the amelioration of the serum levels of inflammatory markers. Upregulation of miR-146a expression and downregulation of nuclear factor kappa B (NF-κB) expression were detected in the liver and adipose tissue of rats treated with the isolated flavonoids. Results from the biological investigation and those from the validated molecular modeling approach on two biological targets of the NF-κB pathway managed to highlight the superior anti-inflammatory activity of quercetin-3-O-galactoside (3) and quercetin (5), as compared to other bioactive metabolites.

18.
Life (Basel) ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34440504

RESUMO

Natural products play a remarkable role not only in the synthesis, design, and discovery of new drugs but also as the most prominent source of drugs and bioactive substances. Adding to the search for new sources of safe innovative antitumor drugs, here we reported a phytochemical study on Pulicaria undulata which revealed promising antiangiogenic agents. Six compounds were isolated and identified as xanthoxyline (1), stigmasterol (2), oleanolic acid (3), salvigenin (4), rhamnetin (5) and dihydroquercetin-4'-methyl ether (6) using nuclear magnetic resonance (NMR) spectroscopic techniques. Compound 3 and 4 are first reported in Pulicaria genus. Both the extract and isolated compounds were evaluated for in vitro antiproliferative activity against breast cancer cell line (MCF-7). In vivo antiproliferative activity against Ehrlich's ascites carcinoma (EAC) were also assessed. The P. undulata extract and isolates showed significant reduction in tumor weight, decreased both serum vascular endothelial growth factor B (VEGF-B) levels and vascular endothelial growth factor receptor 2 (VEGFR-2) expression significantly compared to the control EAC group, suggesting an antiangiogenic activity through the inhibition of VEGF signaling. Besides, they displayed reduction in CD34 expression, confirming their antiangiogenic effect. Moreover, the potential affinity of isolated compounds to human estrogen nuclear receptor-alpha (hER-α), the most recognized modulator of VEGFR-2 expression, was virtually estimated through molecular modeling studies. The most promising activity profiles were assigned to the investigated flavonoids, compounds 4-6, as well as the alkyl-phenylketone, compound 1. Additionally, these four top active compounds showed respective high to intermediate docking scores while possessing preferential binding with hER-α critical pocket residues. Based on the provided data, these isolated compounds illustrated promising inhibitors of VEGF-stimulated angiogenesis, which could be a possible mechanism for their anticancer activity.

19.
World J Hepatol ; 13(3): 328-342, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33815676

RESUMO

BACKGROUND: Diethylnitrosamine (DEN) induces hepatic neoplastic lesions over a prolonged period. AIM: To investigate the promotive action of 2-acetylaminofluorene (2-AAF) when combined with DEN in order to develop a rat model for induction of precancerous lesion and investigate the molecular mechanism underlying the activity of 2-AAF. METHODS: The pre-precancerous lesions were initiated by intraperitoneal injection of DEN for three weeks consecutively, followed by one intraperitoneal injection of 2-AAF at three different doses (100, 200 and 300 mg/kg). Rats were separated into naïve, DEN, DEN + 100 mg 2-AAF, DEN + 200 mg 2-AAF, and DEN + 300 mg 2-AAF groups. Rats were sacrificed after 10 wk and 16 wk. Liver functions, level of alpha-fetoprotein, glutathione S-transferase-P and proliferating cell nuclear antigen staining of liver tissues were performed. The mRNA level of RAB11A, BAX, p53, and Cyclin E and epigenetic regulation by long-noncoding RNA (lncRNA) RP11-513I15.6, miR-1262 (microRNA), and miR-1298 were assessed in the sera and liver tissues of the rats. RESULTS: 2-AAF administration significantly increased the percent area of the precancerous foci and cell proliferation along with a significant decrease in RAB11A, BAX, and p53 mRNA, and the increase in Cyclin E mRNA was associated with a marked decrease in lncRNA RP11-513I15.6 expression with a significant increase in both miR-1262 and miR-1298. CONCLUSION: 2-AFF promoted hepatic precancerous lesions initiated through DEN by decreasing autophagy, apoptosis, and tumor suppression genes, along with increased cell proliferation, in a time- and dose-dependent manner. These actions were mediated under the epigenetic regulation of lncRNA RP11-513I15.6/miR-1262/miR-1298.

20.
World J Gastroenterol ; 27(14): 1435-1450, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33911466

RESUMO

BACKGROUND: Cyanidin-3-O-glucoside (cyan) exhibits antioxidant and anticancer properties. The cell cycle proteins and antimitotic drugs might be promising therapeutic targets in hepatocellular carcinoma. AIM: To investigate the effect of cyan administration on cell cycle in hepatic precancerous lesion (PCL) induced by diethylnitrosamine/2-acetylaminofluorene (DEN/2-AAF) in Wistar rats. METHODS: In vivo, DEN/2-AAF-induced hepatic PCL, rats were treated with three doses of cyan (10, 15, and 20 mg/kg/d, for four consecutive days per week for 16 wk). Blood and liver tissue samples were collected for measurement of the followings; alpha fetoprotein (AFP) liver function and RNA panel differential expression was evaluated via real time polymerase chain reaction. Histopathological examination of liver sections stained with H&E and immunohistochemical study using glutathione S-transferase placental (GSTP) and proliferating cell nuclear antigen (PCNA) antibodies were assessed. RESULTS: Cyan administration mitigated the effect of DEN/2-AFF induced PCL, decreased AFP levels, and improved liver function. Remarkably, treatment with cyan dose dependently decreased the long non-coding RNA MALAT1 and tubulin gamma 1 mRNA expressions and increased the levels of miR-125b, all of which are involved in cell cycle and mitotic spindle assembly. Of note, cyan decreased GSTP foci percent area and PCNA positively stained nuclei. CONCLUSION: Our results indicated that cyan could be used as a potential therapeutic agent to inhibit liver carcinogenesis in rat model via modulation of cell cycle.


Assuntos
Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Lesões Pré-Cancerosas , Animais , Antocianinas , Dietilnitrosamina/toxicidade , Feminino , Glucosídeos/farmacologia , Glutationa Transferase , Fígado , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/tratamento farmacológico , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...