Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(7): 1282-1293, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951660

RESUMO

As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design, which includes the maternal effect1, cage effect2, facility differences3, as well as laboratory and sample handling protocols4, is critical for interpretability of results. Despite significant procedural and bioinformatic improvements, unexplained variability and lack of replicability still occur. One underexplored factor is that the microbiome is dynamic and exhibits diurnal oscillations that can change microbiome composition5-7. In this retrospective analysis of 16S amplicon sequencing studies in male mice, we show that sample collection time affects the conclusions drawn from microbiome studies and its effect size is larger than those of a daily experimental intervention or dietary changes. The timing of divergence of the microbiome composition between experimental and control groups is unique to each experiment. Sample collection times as short as only 4 hours apart can lead to vastly different conclusions. Lack of consistency in the time of sample collection may explain poor cross-study replicability in microbiome research. The impact of diurnal rhythms on the outcomes and study design of other fields is unknown but likely significant.


Assuntos
Microbiota , Animais , Camundongos , Microbiota/genética , Masculino , Manejo de Espécimes/métodos , RNA Ribossômico 16S/genética , Fatores de Tempo , Reprodutibilidade dos Testes , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Estudos Retrospectivos
2.
Front Cell Neurosci ; 18: 1403326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812788

RESUMO

Over the past two decades, Opioid Use Disorder (OUD) among pregnant women has become a major global public health concern. OUD has been characterized as a problematic pattern of opioid use despite adverse physical, psychological, behavioral, and or social consequences. Due to the relapsing-remitting nature of this disorder, pregnant mothers are chronically exposed to exogenous opioids, resulting in adverse neurological and neuropsychiatric outcomes. Collateral fetal exposure to opioids also precipitates severe neurodevelopmental and neurocognitive sequelae. At present, much of what is known regarding the neurobiological consequences of OUD and prenatal opioid exposure (POE) has been derived from preclinical studies in animal models and postnatal or postmortem investigations in humans. However, species-specific differences in brain development, variations in subject age/health/background, and disparities in sample collection or storage have complicated the interpretation of findings produced by these explorations. The ethical or logistical inaccessibility of human fetal brain tissue has also limited direct examinations of prenatal drug effects. To circumvent these confounding factors, recent groups have begun employing induced pluripotent stem cell (iPSC)-derived brain organoid technology, which provides access to key aspects of cellular and molecular brain development, structure, and function in vitro. In this review, we endeavor to encapsulate the advancements in brain organoid culture that have enabled scientists to model and dissect the neural underpinnings and effects of OUD and POE. We hope not only to emphasize the utility of brain organoids for investigating these conditions, but also to highlight opportunities for further technical and conceptual progress. Although the application of brain organoids to this critical field of research is still in its nascent stages, understanding the neurobiology of OUD and POE via this modality will provide critical insights for improving maternal and fetal outcomes.

3.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255782

RESUMO

Hypoxia not only plays a critical role in multiple disease conditions; it also influences the growth and development of cells, tissues and organs. To identify novel hypoxia-related mechanisms involved in cell and tissue growth, studying a precise hypoxia-sensitive time window can be an effective approach. Drosophila melanogaster has been a useful model organism for studying a variety of conditions, and we focused in this study on the life cycle stages of Drosophila to investigate their hypoxia sensitivity. When normoxia-grown flies were treated with 4% O2 at the pupa stage for 3, 2 and 1 day/s, the eclosion rates were 6.1%, 66.7% and 96.4%, respectively, and, when 4% O2 was kept for the whole pupa stage, this regimen was lethal. Surprisingly, when our hypoxia-adapted flies who normally live in 4% O2 were treated with 4% O2 at the pupa stage, no fly eclosed. Within the pupa stage, the pupae at 2 and 3 days after pupae formation (APF), when treated for 2 days, demonstrated 12.5 ± 8.5% and 23.6 ± 1.6% eclosion, respectively, but this was completely lethal when treated for 3 days. We conclude that pupae, at 2 days APF and for a duration of a minimum of 2 days, were the most sensitive to hypoxia. Our data from our hypoxia-adapted flies clearly indicate that epigenetic factors play a critical role in pupa-stage hypoxia sensitivity.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Pupa , Epigenômica , Hipóxia
4.
Neuropharmacology ; 239: 109683, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543137

RESUMO

Buprenorphine (BUP) and methadone (MTD) are used for medication-assisted treatment (MAT) in opioid use disorder. Although both medications show improved maternal and neonatal outcomes compared with illicit opioid use during pregnancy, BUP has exhibited more favorable outcomes to newborns than MTD. The underlying cellular and molecular mechanisms for the difference between BUP and MTD are largely unknown. Here, we examined the growth and neuronal activity in human cortical organoids (hCOs) exposed to BUP or MTD. We found that the growth of hCOs was significantly restricted in the MTD-treated but not in the BUP-treated hCOs and BUP attenuated the growth-restriction effect of MTD in hCOs. Furthermore, a κ-receptor agonist restricted while an antagonist alleviated the growth-restriction effect of MTD in hCOs. Since BUP is not only a µ-agonist but a κ-antagonist, the prevention of this growth-restriction by BUP is likely due to its κ-receptor-antagonism. In addition, using multielectrode array (MEA) technique, we discovered that both BUP and MTD inhibited neuronal activity in hCOs but BUP showed suppressive effects only at higher concentrations. Furthermore, κ-receptor antagonist nBNI did not prevent the MTD-induced suppression of neuronal activity in hCOs but the NMDA-antagonism of MTD (that BUP lacks) plays a role in the inhibition of neuronal activity. We conclude that, although both MTD and BUP are µ-opioid agonists, a) the additional κ-receptor antagonism of BUP mitigates the MTD-induced growth restriction during neurodevelopment and b) the lack of NMDA antagonism of BUP (in contrast to MTD) induces much less suppressive effect on neural network communications.


Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Recém-Nascido , Humanos , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico , Metadona/farmacologia , Metadona/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , N-Metilaspartato , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Receptores Opioides kappa , Organoides , Encéfalo , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico
5.
PLoS One ; 18(8): e0289763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540703

RESUMO

RATIONALE: Acute respiratory failure is a life-threatening clinical outcome in critically ill pediatric patients. In severe cases, patients can require mechanical ventilation (MV) for survival. Early recognition of these patients can potentially help clinicians alter the clinical course and lead to improved outcomes. OBJECTIVES: To build a data-driven model for early prediction of the need for mechanical ventilation in pediatric intensive care unit (PICU) patients. METHODS: The study consists of a single-center retrospective observational study on a cohort of 13,651 PICU patients admitted between 1/01/2010 and 5/15/2018 with a prevalence of 8.06% for MV due to respiratory failure. XGBoost (extreme gradient boosting) and a convolutional neural network (CNN) using medication history were used to develop a prediction model that could yield a time-varying "risk-score"-a continuous probability of whether a patient will receive MV-and an ideal global threshold was calculated from the receiver operating characteristics (ROC) curve. The early prediction point (EPP) was the first time the risk-score surpassed the optimal threshold, and the interval between the EPP and the start of the MV was the early warning period (EWT). Spectral clustering identified patient groups based on risk-score trajectories after EPP. RESULTS: A clinical and medication history-based model achieved a 0.89 area under the ROC curve (AUROC), 0.6 sensitivity, 0.95 specificity, 0.55 positive predictive value (PPV), and 0.95 negative predictive value (NPV). Early warning time (EWT) median [inter-quartile range] of this model was 9.9[4.2-69.2] hours. Clustering risk-score trajectories within a six-hour window after the early prediction point (EPP) established three patient groups, with the highest risk group's PPV being 0.92. CONCLUSIONS: This study uses a unique method to extract and apply medication history information, such as time-varying variables, to identify patients who may need mechanical ventilation for respiratory failure and provide an early warning period to avert it.


Assuntos
Respiração Artificial , Insuficiência Respiratória , Humanos , Criança , Unidades de Terapia Intensiva Pediátrica , Estudos Retrospectivos , Curva ROC , Insuficiência Respiratória/terapia , Unidades de Terapia Intensiva
6.
Transl Psychiatry ; 13(1): 151, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147277

RESUMO

Opioid use disorder (OUD) among pregnant women has become an epidemic in the United States. Pharmacological interventions for maternal OUD most commonly involve methadone, a synthetic opioid analgesic that attenuates withdrawal symptoms and behaviors linked with drug addiction. However, evidence of methadone's ability to readily accumulate in neural tissue, and cause long-term neurocognitive sequelae, has led to concerns regarding its effect on prenatal brain development. We utilized human cortical organoid (hCO) technology to probe how this drug impacts the earliest mechanisms of cortico-genesis. Bulk mRNA sequencing of 2-month-old hCOs chronically treated with a clinically relevant dose of 1 µM methadone for 50 days revealed a robust transcriptional response to methadone associated with functional components of the synapse, the underlying extracellular matrix (ECM), and cilia. Co-expression network and predictive protein-protein interaction analyses demonstrated that these changes occurred in concert, centered around a regulatory axis of growth factors, developmental signaling pathways, and matricellular proteins (MCPs). TGFß1 was identified as an upstream regulator of this network and appeared as part of a highly interconnected cluster of MCPs, of which thrombospondin 1 (TSP1) was most prominently downregulated and exhibited dose-dependent reductions in protein levels. These results demonstrate that methadone exposure during early cortical development alters transcriptional programs associated with synaptogenesis, and that these changes arise by functionally modulating extra-synaptic molecular mechanisms in the ECM and cilia. Our findings provide novel insight into the molecular underpinnings of methadone's putative effect on cognitive and behavioral development and a basis for improving interventions for maternal opioid addiction.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Humanos , Feminino , Gravidez , Lactente , Metadona/farmacologia , Metadona/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Encéfalo , Tratamento de Substituição de Opiáceos/métodos
7.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022795

RESUMO

Excessive erythrocytosis (EE) is a major hallmark of patients suffering from chronic mountain sickness (CMS, also known as Monge's disease) and is responsible for major morbidity and even mortality in early adulthood. We took advantage of unique populations, one living at high altitude (Peru) showing EE, with another population, at the same altitude and region, showing no evidence of EE (non-CMS). Through RNA-Seq, we identified and validated the function of a group of long noncoding RNAs (lncRNAs) that regulate erythropoiesis in Monge's disease, but not in the non-CMS population. Among these lncRNAs is hypoxia induced kinase-mediated erythropoietic regulator (HIKER)/LINC02228, which we showed plays a critical role in erythropoiesis in CMS cells. Under hypoxia, HIKER modulated CSNK2B (the regulatory subunit of casein kinase 2). A downregulation of HIKER downregulated CSNK2B, remarkably reducing erythropoiesis; furthermore, an upregulation of CSNK2B on the background of HIKER downregulation rescued erythropoiesis defects. Pharmacologic inhibition of CSNK2B drastically reduced erythroid colonies, and knockdown of CSNK2B in zebrafish led to a defect in hemoglobinization. We conclude that HIKER regulates erythropoiesis in Monge's disease and acts through at least one specific target, CSNK2B, a casein kinase.


Assuntos
Doença da Altitude , Caseína Quinase II , Policitemia , RNA Longo não Codificante , Animais , Doença da Altitude/genética , Doença Crônica , Eritropoese/genética , Hipóxia/genética , RNA Longo não Codificante/genética , Peixe-Zebra/genética , Caseína Quinase II/metabolismo , Humanos
8.
Front Cell Neurosci ; 16: 1050432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568886

RESUMO

Introduction: Down syndrome (DS) is a genetic disorder with an extra copy of chromosome 21 and DS remains one of the most common causes of intellectual disabilities in humans. All DS patients have Alzheimer's disease (AD)-like neuropathological changes including accumulation of plaques and tangles by their 40s, much earlier than the onset of such neuropathological changes in AD patients. Due to the lack of human samples and appropriate techniques, our understanding of DS neuropathology during brain development or before the clinical onset of the disease remains largely unexplored at the cellular and molecular levels. Methods: We used induced pluripotent stem cell (iPSC) and iPSC-derived 3D cortical organoids to model Alzheimer's disease in Down syndrome and explore the earliest cellular and molecular changes during DS fetal brain development. Results: We report that DS iPSCs have a decreased growth rate than control iPSCs due to a decreased cell proliferation. DS iPSC-derived cortical organoids have a much higher immunoreactivity of amyloid beta (Aß) antibodies and a significantly higher amount of amyloid plaques than control organoids. Although Elisa results did not detect a difference of Aß40 and Aß42 level between the two groups, the ratio of Aß42/Aß40 in the detergent-insoluble fraction of DS organoids was significantly higher than control organoids. Furthermore, an increased Tau phosphorylation (pTau S396) in DS organoids was confirmed by immunostaining and Western blot. Elisa data demonstrated that the ratio of insoluble Tau/total Tau in DS organoids was significantly higher than control organoids. Conclusion: DS iPSC-derived cortical organoids mimic AD-like pathophysiologyical phenotype in vitro, including abnormal Aß and insoluble Tau accumulation. The molecular neuropathologic signature of AD is present in DS much earlier than predicted, even in early fetal brain development, illustrating the notion that brain organoids maybe a good model to study early neurodegenerative conditions.

9.
Neurobiol Dis ; 174: 105882, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202289

RESUMO

Early epilepsy is a prominent feature in patients with CDKL5-deficiency disorder (CDD). The underlying mechanism for excessive excitability in CDD is largely unknown. The brain organoid model has been recently developed to resemble many critical features of early human brain development. Here, we used a brain organoid model to investigate the cellular electrophysiological basis for hyper-excitability in CDD patients. Our study employed cortical organoids derived from two CDD patients harboring the same CDKL5 mutation (R59X) and two controls from their healthy parents. Whole-cell patch-clamp recordings revealed higher action potential (AP) firing rate and lower rheobase in both CDD organoids, indicating increased intrinsic neuronal excitability. We further found dysfunction of voltage-gated ion channels in CDD neurons that leads to hyperexcitability, including higher Na+ and K+ current densities and a negative shift in Na+ channel activation. In contrast to neuronal properties, we found that glutamatergic neurotransmission and the electrophysiological properties of glial cells were not altered in CDD organoids. In support of our CDD findings, we further discovered similar electrophysiologic properties in cortical organoids derived from a Rett syndrome (RTT) patient, including alterations in AP firings and Na+ and K+ channel function suggesting a convergent mechanism. Together, our study suggests a critical role of intrinsic neuronal hyperexcitability and ion channel dysfunction, seen in early brain development in both CDD and RTT disorders. This investigation provides potential novel drug targets for developing treatments of early epilepsy in such disorders.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Síndrome de Rett , Humanos , Organoides , Canais Iônicos , Síndrome de Rett/genética , Epilepsia/genética , Proteínas Serina-Treonina Quinases/genética
10.
PLoS One ; 17(8): e0273524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36006949

RESUMO

Hypoxia plays a major role in the etiology and pathogenesis of most of the leading causes of morbidity and mortality, whether cardiovascular diseases, cancer, respiratory diseases or stroke. Despite active research on hypoxia-signaling pathways, the understanding of regulatory mechanisms, especially in specific tissues, still remain elusive. With the accessibility of thousands of potentially diverse genomic datasets, computational methods are utilized to generate new hypotheses. Here we utilized Boolean implication relationship, a powerful method to probe symmetrically and asymmetrically related genes, to identify novel hypoxia related genes. We used a well-known hypoxia-responsive gene, VEGFA, with very large human expression datasets (n = 25,955) to identify novel hypoxia-responsive candidate gene/s. Further, we utilized in-vitro analysis using human endothelial cells exposed to 1% O2 environment for 2, 8, 24 and 48 hours to validate top candidate genes. Out of the top candidate genes (n = 19), 84% genes were previously reported as hypoxia related, validating our results. However, we identified FAM114A1 as a novel candidate gene significantly upregulated in the endothelial cells at 8, 24 and 48 hours of 1% O2 environment. Additional evidence, particularly the localization of intronic miRNA and numerous HREs further support and strengthen our finding. Current results on FAM114A1 provide an example demonstrating the utility of powerful computational methods, like Boolean implications, in playing a major role in hypothesis building and discovery.


Assuntos
Células Endoteliais , MicroRNAs , Hipóxia Celular/genética , Estudos de Associação Genética , Humanos , Hipóxia/genética , MicroRNAs/genética
11.
Exp Mol Med ; 54(6): 777-787, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35672450

RESUMO

At high altitude Andean region, hypoxia-induced excessive erythrocytosis (EE) is the defining feature of Monge's disease or chronic mountain sickness (CMS). At the same altitude, resides a population that has developed adaptive mechanism(s) to constrain this hypoxic response (non-CMS). In this study, we utilized an in vitro induced pluripotent stem cell model system to study both populations using genomic and molecular approaches. Our whole genome analysis of the two groups identified differential SNPs between the CMS and non-CMS subjects in the ARID1B region. Under hypoxia, the expression levels of ARID1B significantly increased in the non-CMS cells but decreased in the CMS cells. At the molecular level, ARID1B knockdown (KD) in non-CMS cells increased the levels of the transcriptional regulator GATA1 by 3-fold and RBC levels by 100-fold under hypoxia. ARID1B KD in non-CMS cells led to increased proliferation and EPO sensitivity by lowering p53 levels and decreasing apoptosis through GATA1 mediation. Interestingly, under hypoxia ARID1B showed an epigenetic role, altering the chromatin states of erythroid genes. Indeed, combined Real-time PCR and ATAC-Seq results showed that ARID1B modulates the expression of GATA1 and p53 and chromatin accessibility at GATA1/p53 target genes. We conclude that ARID1B is a novel erythroid regulator under hypoxia that controls various aspects of erythropoiesis in high-altitude dwellers.


Assuntos
Doença da Altitude , Proteínas de Ligação a DNA , Fatores de Transcrição , Doença da Altitude/genética , Doença da Altitude/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença Crônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eritropoese/genética , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Nat Commun ; 13(1): 2387, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501322

RESUMO

Transcription Factor 4 (TCF4) has been associated with autism, schizophrenia, and other neuropsychiatric disorders. However, how pathological TCF4 mutations affect the human neural tissue is poorly understood. Here, we derive neural progenitor cells, neurons, and brain organoids from skin fibroblasts obtained from children with Pitt-Hopkins Syndrome carrying clinically relevant mutations in TCF4. We show that neural progenitors bearing these mutations have reduced proliferation and impaired capacity to differentiate into neurons. We identify a mechanism through which TCF4 loss-of-function leads to decreased Wnt signaling and then to diminished expression of SOX genes, culminating in reduced progenitor proliferation in vitro. Moreover, we show reduced cortical neuron content and impaired electrical activity in the patient-derived organoids, phenotypes that were rescued after correction of TCF4 expression or by pharmacological modulation of Wnt signaling. This work delineates pathological mechanisms in neural cells harboring TCF4 mutations and provides a potential target for therapeutic strategies for genetic disorders associated with this gene.


Assuntos
Deficiência Intelectual , Neurônios , Proliferação de Células/genética , Criança , Humanos , Hiperventilação/metabolismo , Deficiência Intelectual/genética , Neurônios/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
13.
Hum Mol Genet ; 31(7): 1130-1140, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34718575

RESUMO

The molecular mechanisms leading to high-altitude pulmonary hypertension (HAPH) remains poorly understood. We previously analyzed the whole genome sequence of Kyrgyz highland population and identified eight genomic intervals having a potential role in HAPH. Tropomodulin 3 gene (TMOD3), which encodes a protein that binds and caps the pointed ends of actin filaments and inhibits cell migration, was one of the top candidates. Here we systematically sought additional evidence to validate the functional role of TMOD3. In-silico analysis reveals that some of the SNPs in HAPH associated genomic intervals were positioned in a regulatory region that could result in alternative splicing of TMOD3. In order to functionally validate the role of TMOD3 in HAPH, we exposed Tmod3-/+ mice to 4 weeks of constant hypoxia, i.e. 10% O2 and analyzed both functional (hemodynamic measurements) and structural (angiography) parameters related to HAPH. The hemodynamic measurements, such as right ventricular systolic pressure, a surrogate measure for pulmonary arterial systolic pressure, and right ventricular contractility (RV- ± dP/dt), increases with hypoxia did not separate between Tmod3-/+ and control mice. Remarkably, there was a significant increase in the number of lung vascular branches and total length of pulmonary vascular branches (P < 0.001) in Tmod3-/+ after 4 weeks of constant hypoxia as compared with controls. Notably, the Tmod3-/+ endothelial cells migration was also significantly higher than that from the wild-type littermates. Our results indicate that, under chronic hypoxia, lower levels of Tmod3 play an important role in the maintenance or neo-vascularization of pulmonary arteries.


Assuntos
Células Endoteliais , Tropomodulina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Endoteliais/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Pulmão/metabolismo , Camundongos , Tropomodulina/química , Tropomodulina/genética
14.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948211

RESUMO

Several SLC22 transporters in the human kidney and other tissues are thought to regulate endogenous small antioxidant molecules such as uric acid, ergothioneine, carnitine, and carnitine derivatives. These transporters include those from the organic anion transporter (OAT), OCTN/OCTN-related, and organic cation transporter (OCT) subgroups. In mammals, it has been difficult to show a clear in vivo role for these transporters during oxidative stress. Ubiquitous knockdowns of related Drosophila SLC22s-including transporters homologous to those previously identified by us in mammals such as the "Fly-Like Putative Transporters" FLIPT1 (SLC22A15) and FLIPT2 (SLC22A16)-have shown modest protection against oxidative stress. However, these fly transporters tend to be broadly expressed, and it is unclear if there is an organ in which their expression is critical. Using two tissue-selective knockdown strategies, we were able to demonstrate much greater and longer protection from oxidative stress compared to previous whole fly knockdowns as well as both parent and WT strains (CG6126: p < 0.001, CG4630: p < 0.01, CG16727: p < 0.0001 and CG6006: p < 0.01). Expression in the Malpighian tubule and likely other tissues as well (e.g., gut, fat body, nervous system) appear critical for managing oxidative stress. These four Drosophila SLC22 genes are similar to human SLC22 transporters (CG6126: SLC22A16, CG16727: SLC22A7, CG4630: SLC22A3, and CG6006: SLC22A1, SLC22A2, SLC22A3, SLC22A6, SLC22A7, SLC22A8, SLC22A11, SLC22A12 (URAT1), SLC22A13, SLC22A14)-many of which are highly expressed in the kidney. Consistent with the Remote Sensing and Signaling Theory, this indicates an important in vivo role in the oxidative stress response for multiple SLC22 transporters within the fly renal system, perhaps through interaction with SLC22 counterparts in non-renal tissues. We also note that many of the human relatives are well-known drug transporters. Our work not only indicates the importance of SLC22 transporters in the fly renal system but also sets the stage for in vivo studies by examining their role in mammalian oxidative stress and organ crosstalk.


Assuntos
Drosophila melanogaster/metabolismo , Rim/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Transporte Biológico/fisiologia , Humanos , Transdução de Sinais/fisiologia
15.
Front Physiol ; 12: 680275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248668

RESUMO

The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.

16.
mSystems ; : e0011621, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184915

RESUMO

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia and hypercapnia (IHC), affects the composition of the gut microbiome and metabolome. The gut microbiome has diurnal oscillations that play a crucial role in regulating circadian and overall metabolic homeostasis. Thus, we hypothesized that IHC adversely alters the gut luminal dynamics of key microbial families and metabolites. The objective of this study was to determine the diurnal dynamics of the fecal microbiome and metabolome of Apoe-/- mice after a week of IHC exposure. Individually housed, 10-week-old Apoe-/- mice on an atherogenic diet were split into two groups. One group was exposed to daily IHC conditions for 10 h (Zeitgeber time 2 [ZT2] to ZT12), while the other was maintained in room air. Six days after the initiation of the IHC conditions, fecal samples were collected every 4 h for 24 h (6 time points). We performed 16S rRNA gene amplicon sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) to assess changes in the microbiome and metabolome. IHC induced global changes in the cyclical dynamics of the gut microbiome and metabolome. Ruminococcaceae, Lachnospiraceae, S24-7, and Verrucomicrobiaceae had the greatest shifts in their diurnal oscillations. In the metabolome, bile acids, glycerolipids (phosphocholines and phosphoethanolamines), and acylcarnitines were greatly affected. Multi-omic analysis of these results demonstrated that Ruminococcaceae and tauro-ß-muricholic acid (TßMCA) cooccur and are associated with IHC conditions and that Coriobacteriaceae and chenodeoxycholic acid (CDCA) cooccur and are associated with control conditions. IHC significantly change the diurnal dynamics of the fecal microbiome and metabolome, increasing members and metabolites that are proinflammatory and proatherogenic while decreasing protective ones. IMPORTANCE People with obstructive sleep apnea are at a higher risk of high blood pressure, type 2 diabetes, cardiac arrhythmias, stroke, and sudden cardiac death. We wanted to understand whether the gut microbiome changes induced by obstructive sleep apnea could potentially explain some of these medical problems. By collecting stool from a mouse model of this disease at multiple time points during the day, we studied how obstructive sleep apnea changed the day-night patterns of microbes and metabolites of the gut. Since the oscillations of the gut microbiome play a crucial role in regulating metabolism, changes in these oscillations can explain why these patients can develop so many metabolic problems. We found changes in microbial families and metabolites that regulate many metabolic pathways contributing to the increased risk for heart disease seen in patients with obstructive sleep apnea.

17.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043589

RESUMO

Cerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we reported that proliferative astrocytes played a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2- and KLF4-dependent elevation of eNOS in CCM endothelium. The increased brain endothelial production of NO stabilized HIF-1α in astrocytes, resulting in increased VEGF production and expression of a "hypoxic" program under normoxic conditions. We showed that the upregulation of cyclooxygenase-2 (COX-2), a direct HIF-1α target gene and a known component of the hypoxic program, contributed to the development of CCM lesions because the administration of a COX-2 inhibitor significantly prevented the progression of CCM lesions. Thus, non-cell-autonomous crosstalk between CCM endothelium and astrocytes propels vascular lesion development, and components of the hypoxic program represent potential therapeutic targets for CCMs.


Assuntos
Astrócitos/fisiologia , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Astrócitos/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Modelos Neurológicos , Mutação , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese
18.
Front Physiol ; 12: 663950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897472

RESUMO

Obstructive sleep apnea (OSA), a common sleep disorder characterized by intermittent hypoxia and hypercapnia (IHC), increases atherosclerosis risk. However, the contribution of intermittent hypoxia (IH) or intermittent hypercapnia (IC) in promoting atherosclerosis remains unclear. Since gut microbiota and metabolites have been implicated in atherosclerosis, we examined whether IH or IC alters the microbiome and metabolome to induce a pro-atherosclerotic state. Apolipoprotein E deficient mice (ApoE-/- ), treated with IH or IC on a high-fat diet (HFD) for 10 weeks, were compared to Air controls. Atherosclerotic lesions were examined, gut microbiome was profiled using 16S rRNA gene amplicon sequencing and metabolome was assessed by untargeted mass spectrometry. In the aorta, IC-induced atherosclerosis was significantly greater than IH and Air controls (aorta, IC 11.1 ± 0.7% vs. IH 7.6 ± 0.4%, p < 0.05 vs. Air 8.1 ± 0.8%, p < 0.05). In the pulmonary artery (PA), however, IH, IC, and Air were significantly different from each other in atherosclerotic formation with the largest lesion observed under IH (PA, IH 40.9 ± 2.0% vs. IC 20.1 ± 2.6% vs. Air 12.2 ± 1.5%, p < 0.05). The most differentially abundant microbial families (p < 0.001) were Peptostreptococcaceae, Ruminococcaceae, and Erysipelotrichaceae. The most differentially abundant metabolites (p < 0.001) were tauro-ß-muricholic acid, ursodeoxycholic acid, and lysophosphoethanolamine (18:0). We conclude that IH and IC (a) modulate atherosclerosis progression differently in distinct vascular beds with IC, unlike IH, facilitating atherosclerosis in both aorta and PA and (b) promote an atherosclerotic luminal gut environment that is more evident in IH than IC. We speculate that the resulting changes in the gut metabolome and microbiome interact differently with distinct vascular beds.

19.
Mol Psychiatry ; 26(11): 7047-7068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33888873

RESUMO

Early-onset epileptic encephalopathies are severe disorders often associated with specific genetic mutations. In this context, the CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by early-onset seizures, intellectual delay, and motor dysfunction. Although crucial for proper brain development, the precise targets of CDKL5 and its relation to patients' symptoms are still unknown. Here, induced pluripotent stem cells derived from individuals deficient in CDKL5 protein were used to generate neural cells. Proteomic and phosphoproteomic approaches revealed disruption of several pathways, including microtubule-based processes and cytoskeleton organization. While CDD-derived neural progenitor cells have proliferation defects, neurons showed morphological alterations and compromised glutamatergic synaptogenesis. Moreover, the electrical activity of CDD cortical neurons revealed hyperexcitability during development, leading to an overly synchronized network. Many parameters of this hyperactive network were rescued by lead compounds selected from a human high-throughput drug screening platform. Our results enlighten cellular, molecular, and neural network mechanisms of genetic epilepsy that could ultimately promote novel therapeutic opportunities for patients.


Assuntos
Síndromes Epilépticas , Animais , Síndromes Epilépticas/genética , Humanos , Camundongos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases , Proteômica
20.
Nat Commun ; 12(1): 997, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579965

RESUMO

To detect the genomic mechanisms underlying evolutionary dynamics of adaptation in sexually reproducing organisms, we analyze multigenerational whole genome sequences of Drosophila melanogaster adapting to extreme O2 conditions over an experiment conducted for nearly two decades. We develop methods to analyze time-series genomics data and predict adaptive mechanisms. Here, we report a remarkable level of synchronicity in both hard and soft selective sweeps in replicate populations as well as the arrival of favorable de novo mutations that constitute a few asynchronized sweeps. We additionally make direct experimental observations of rare recombination events that combine multiple alleles on to a single, better-adapted haplotype. Based on the analyses of the genes in genomic intervals, we provide a deeper insight into the mechanisms of genome adaptation that allow complex organisms to survive harsh environments.


Assuntos
Adaptação Fisiológica/genética , Drosophila melanogaster/genética , Genoma de Inseto , Genômica , Oxigênio/metabolismo , Alelos , Animais , Evolução Molecular , Feminino , Frequência do Gene , Haplótipos , Masculino , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...