Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2323212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481730

RESUMO

Genetic aberrations and immune escape are fundamental in MDS and CMML initiation and progression to sAML. Therefore, quantitative and spatial immune cell organization, expression of immune checkpoints (ICP), classical human leukocyte antigen class I (HLA-I) and the non-classical HLA-Ib antigens were analyzed in 274 neoplastic and 50 non-neoplastic bone marrow (BM) biopsies using conventional and multiplex immunohistochemistry and correlated to publicly available dataset. Higher numbers of tissue infiltrating lymphocytes (TILs) were found in MDS/CMML (8.8%) compared to sAML (7.5%) and non-neoplastic BM (5.3%). Higher T cell abundance, including the CD8+ T cell subset, inversely correlated with the number of pathogenic mutations and was associated with blast BM counts, ICP expression, spatial T cell distribution and improved patients' survival in MDS and CMML. In MDS/CMML, higher PD-1/PD-L1/PD-L2 and HLA-I, but lower HLA-G expression correlated with a significantly better patients' outcome. Moreover, a closer spatial proximity of T cell subpopulations and their proximity to myeloid blasts showed a stronger prognostic impact when compared to TIL numbers. In sAML - the continuum of MDS and CMML - the number of TILs had no impact on prognosis, but higher CD28 and HLA-I expression correlated with a better outcome of sAML patients. This study underlines the independent prognostic value of the tumor microenvironment in MDS/CMML progression to sAML, which shows the most pronounced immune escape. Moreover, new prognostic markers, like HLA-G expression and spatial T cell distribution, were described for the first time, which might also serve as therapeutic targets.


Assuntos
Medula Óssea , Antígenos HLA-G , Humanos , Prognóstico , Antígenos HLA-G/metabolismo , Medula Óssea/metabolismo , Microambiente Tumoral/genética , Linfócitos T CD8-Positivos
2.
Eur J Cell Biol ; 103(2): 151400, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38401491

RESUMO

Oral squamous cell carcinoma (OSCC) is the most frequent type of cancer of the head and neck area accounting for approx. 377,000 new cancer cases every year. The epithelial-to-mesenchymal transition (EMT) program plays an important role in OSCC progression and metastasis therefore contributing to a poor prognosis in patients with advanced disease. Transforming growth factor beta (TGF-ß) is a powerful inducer of EMT thereby increasing cancer cell aggressiveness. Here, we aimed at identifying RNA-binding proteins (RBPs) that affect TGF-ß-induced EMT. To this end we treated oral cancer cells with TGF-ß and identified a total of 643 significantly deregulated protein-coding genes in response to TGF-ß. Of note, 19 genes encoded RBPs with NANOS1 being the most downregulated RBP. Subsequent cellular studies demonstrated a strong inhibitory effect of NANOS1 on migration and invasion of SAS oral cancer cells. Further mechanistic studies revealed an interaction of NANOS1 with the TGF-ß receptor 1 (TGFBR1) mRNA, leading to increased decay of this transcript and a reduced TGFBR1 protein expression, thereby preventing downstream TGF-ß/SMAD signaling. In summary, we identified NANOS1 as negative regulator of TGF-ß signaling in oral cancer cells.

4.
Blood ; 140(23): 2418-2419, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480224
5.
Cancer Rep (Hoboken) ; 5(3): e1493, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309225

RESUMO

BACKGROUND: To date, no biomarkers exist to predict response or resistance to immunotherapy in hepatocellular carcinoma (HCC). Recent approaches to classify HCC into different immunological states revealed a negative correlation between Wnt/ß-catenin activation and immunogenicity and T-cell infiltration. If these "cold" tumors with primary resistance to checkpoint inhibition (CPI) may benefit from dual treatment of CPI and anti-angiogenic therapy has not been proved. CASE: Here, we describe the case of a male patient with metastatic HCC. After failure of standard of care treatment with lenvatinib, sorafenib and ramucirumab fourth-line systemic therapy with atezolizumab and bevacizumab were applied leading to a phenomenal response. Immunohistochemical evaluations were compatible with Wnt/ß-catenin pathway activation and accompanying low T-cell infiltration as well as low PD-L1 score. CONCLUSION: Patients with Wnt/ß-catenin activation may benefit from combination therapy with atezolizumab and bevacizumab regardless of potential predictive markers for immune checkpoint inhibition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos Monoclonais Humanizados , Bevacizumab , Carcinoma Hepatocelular/tratamento farmacológico , Cateninas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino
6.
Noncoding RNA ; 7(4)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34707078

RESUMO

The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein-protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.

7.
Mol Cancer ; 20(1): 88, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116687

RESUMO

BACKGROUND: Cancer metastases are the main cause of lethality. The five-year survival rate for patients diagnosed with advanced stage oral cancer is 30%. Hence, the identification of novel therapeutic targets is an urgent need. However, tumors are comprised of a heterogeneous collection of cells with distinct genetic and molecular profiles that can differentially promote metastasis making therapy development a challenging task. Here, we leveraged intratumoral heterogeneity in order to identify drivers of cancer cell motility that might be druggable targets for anti-metastasis therapy. METHODS: We used 2D migration and 3D matrigel-based invasion assays to characterize the invasive heterogeneity among and within four human oral cancer cell lines in vitro. Subsequently, we applied mRNA-sequencing to map the transcriptomes of poorly and strongly invasive subclones as well as primary tumors and matched metastasis. RESULTS: We identified SAS cells as a highly invasive oral cancer cell line. Clonal analysis of SAS yielded a panel of 20 subclones with different invasive capacities. Integrative gene expression analysis identified the Lymphocyte cell-specific protein-tyrosine kinase (LCK) as a druggable target gene associated with cancer cell invasion and metastasis. Inhibition of LCK using A-770041 or dasatinib blocked invasion of highly aggressive SAS cells. Interestingly, reduction of LCK activity increased the formation of adherens junctions and induced cell differentiation. CONCLUSION: Analysis of invasive heterogeneity led to the discovery of LCK as an important regulator of motility in oral cancer cells. Hence, small molecule mediated inhibition of LCK could be a promising anti-metastasis therapy option for oral cancer patients.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Dasatinibe/farmacologia , Humanos , Neoplasias Bucais/genética , Invasividade Neoplásica/patologia , Transcriptoma
8.
Sci Rep ; 11(1): 9362, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931674

RESUMO

Angiosarcoma is an aggressive malignancy of endothelial cells that carries a high mortality rate. Cytotoxic chemotherapy can elicit clinical responses, but the duration of response is limited. Sequencing reveals multiple mutations in angiogenesis pathways in angiosarcomas, particularly in vascular endothelial growth factor (VEGFR) and mitogen-activated protein kinase (MAPK) signaling. We aimed to determine the biological relevance of these pathways in angiosarcoma. Tissue microarray consisting of clinical formalin-fixed paraffin embedded tissue archival samples were stained for phospho- extracellular signal-regulated kinase (p-ERK) with immunohistochemistry. Angiosarcoma cell lines were treated with the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, pan-VEGFR inhibitor cediranib, or combined trametinib and cediranib and viability was assessed. Reverse phase protein array (RPPA) was performed to assess multiple oncogenic protein pathways. SVR angiosarcoma cells were grown in vivo and gene expression effects of treatment were assessed with whole exome RNA sequencing. MAPK signaling was found active in over half of clinical angiosarcoma samples. Inhibition of MAPK signaling with the MEK inhibitor trametinib decreased the viability of angiosarcoma cells. Combined inhibition of the VEGF and MAPK pathways with cediranib and trametinib had an additive effect in in vitro models, and a combinatorial effect in an in vivo model. Combined treatment led to smaller tumors than treatment with either agent alone. RNA-seq demonstrated distinct expression signatures between the trametinib treated tumors and those treated with both trametinib and cediranib. These results indicate a clinical study of combined VEGFR and MEK inhibition in angiosarcoma is warranted.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hemangiossarcoma/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Hemangiossarcoma/metabolismo , Hemangiossarcoma/patologia , Humanos , Camundongos , Camundongos Nus , Prognóstico , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Quinazolinas/administração & dosagem , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Br J Cancer ; 125(2): 176-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33795809

RESUMO

BACKGROUND: The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. METHODS: We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. RESULTS: We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. CONCLUSIONS: CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


Assuntos
Neoplasias da Mama/imunologia , Antígenos CD4/genética , Antígenos CD8/genética , Linfócitos T CD8-Positivos/transplante , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Fator Plaquetário 4/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Células Supressoras Mieloides/imunologia , Células Neoplásicas Circulantes/imunologia , Fator Plaquetário 4/administração & dosagem , Fator Plaquetário 4/farmacologia , Análise de Sobrevida , Transplante Isogênico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076269

RESUMO

Platelets are highly abundant cell fragments of the peripheral blood that originate from megakaryocytes. Beside their well-known role in wound healing and hemostasis, they are emerging mediators of the immune response and implicated in a variety of pathophysiological conditions including cancer. Despite their anucleate nature, they harbor a diverse set of RNAs, which are subject to an active sorting mechanism from megakaryocytes into proplatelets and affect platelet biogenesis and function. However, sorting mechanisms are poorly understood, but RNA-binding proteins (RBPs) have been suggested to play a crucial role. Moreover, RBPs may regulate RNA translation and decay following platelet activation. In concert with other regulators, including microRNAs, long non-coding and circular RNAs, RBPs control multiple steps of the platelet life cycle. In this review, we will highlight the different RNA species within platelets and their impact on megakaryopoiesis, platelet biogenesis and platelet function. Additionally, we will focus on the currently known concepts of post-transcriptional control mechanisms important for RNA fate within platelets with a special emphasis on RBPs.


Assuntos
Plaquetas/metabolismo , Processamento Pós-Transcricional do RNA , Trombopoese , Animais , Plaquetas/citologia , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957697

RESUMO

Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundário , Movimento Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Metástase Neoplásica , Proteínas de Ligação a RNA/genética
14.
Cancers (Basel) ; 12(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727085

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) belong to the deadliest malignancies in the western world. Mutations in TP53 and KRAS genes along with some other frequent polymorphisms occur almost universally and are major drivers of tumour initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses and differences in overall survival observed in PDAC patients. Thus, recent classifications of PDAC tumour samples have leveraged transcriptome-wide gene expression data to account for epigenetic, transcriptional and post-transcriptional mechanisms that may contribute to this deadly disease. Intriguingly, long intervening RNAs (lincRNAs) are a special class of long non-coding RNAs (lncRNAs) that can control gene expression programs on multiple levels thereby contributing to cancer progression. However, their subtype-specific expression and function as well as molecular interactions in PDAC are not fully understood yet. In this study, we systematically investigated the expression of lincRNAs in pancreatic cancer and its molecular subtypes using publicly available data from large-scale studies. We identified 27 deregulated lincRNAs that showed a significant different expression pattern in PDAC subtypes suggesting context-dependent roles. We further analyzed these lincRNAs regarding their common expression patterns. Moreover, we inferred clues on their functions based on correlation analyses and predicted interactions with RNA-binding proteins, microRNAs, and mRNAs. In summary, we identified several PDAC-associated lincRNAs of prognostic relevance and potential context-dependent functions and molecular interactions. Hence, our study provides a valuable resource for future investigations to decipher the role of lincRNAs in pancreatic cancer.

15.
Cancers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414223

RESUMO

Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by specific mutations and gene expression changes associated with differences in patient survival. In addition to differentially regulated mRNAs, non-coding RNAs, including long non-coding RNAs (lncRNAs), were shown to have subtype-specific expression patterns. Hence, we aimed to characterize prognostic lncRNAs with deregulated expression in the squamous subtype of PDAC, which has the worst prognosis. Extensive in silico analyses followed by in vitro experiments identified long intergenic non-coding RNA 261 (LINC00261) as a downregulated lncRNA in the squamous subtype of PDAC, which is generally associated with transforming growth factor ß (TGFß) signaling in human cancer cells. Its genomic neighbor, the transcription factor forkhead box protein A2 (FOXA2), regulated LINC00261 expression by direct binding of the LINC00261 promoter. CRISPR-mediated knockdown and promoter knockout validated the importance of LINC00261 in TGFß-mediated epithelial-mesenchymal transition (EMT) and established the epithelial marker E-cadherin, an important cell adhesion protein, as a downstream target of LINC00261. Consequently, depletion of LINC00261 enhanced motility and invasiveness of PANC-1 cells in vitro. Altogether, our data suggest that LINC00261 is an important tumor-suppressive lncRNA in PDAC that is involved in maintaining a pro-epithelial state associated with favorable disease outcome.

16.
Nat Commun ; 9(1): 2923, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050129

RESUMO

The standard treatment for high-grade serous ovarian cancer is primary debulking surgery followed by chemotherapy. The extent of metastasis and invasive potential of lesions can influence the outcome of these primary surgeries. Here, we explored the underlying mechanisms that could increase metastatic potential in ovarian cancer. We discovered that FABP4 (fatty acid binding protein) can substantially increase the metastatic potential of cancer cells. We also found that miR-409-3p regulates FABP4 in ovarian cancer cells and that hypoxia decreases miR-409-3p levels. Treatment with DOPC nanoliposomes containing either miR-409-3p mimic or FABP4 siRNA inhibited tumor progression in mouse models. With RPPA and metabolite arrays, we found that FABP4 regulates pathways associated with metastasis and affects metabolic pathways in ovarian cancer cells. Collectively, these findings demonstrate that FABP4 is functionally responsible for aggressive patterns of disease that likely contribute to poor prognosis in ovarian cancer.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/genética
19.
Cancer Res ; 78(12): 3233-3242, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29661830

RESUMO

Mounting clinical and preclinical evidence supports a key role for sustained adrenergic signaling in the tumor microenvironment as a driver of tumor growth and progression. However, the mechanisms by which adrenergic neurotransmitters are delivered to the tumor microenvironment are not well understood. Here we present evidence for a feed-forward loop whereby adrenergic signaling leads to increased tumoral innervation. In response to catecholamines, tumor cells produced brain-derived neurotrophic factor (BDNF) in an ADRB3/cAMP/Epac/JNK-dependent manner. Elevated BDNF levels in the tumor microenvironment increased innervation by signaling through host neurotrophic receptor tyrosine kinase 2 receptors. In patients with cancer, high tumor nerve counts were significantly associated with increased BDNF and norepinephrine levels and decreased overall survival. Collectively, these data describe a novel pathway for tumor innervation, with resultant biological and clinical implications.Significance: Sustained adrenergic signaling promotes tumor growth and metastasis through BDNF-mediated tumoral innervation. Cancer Res; 78(12); 3233-42. ©2018 AACR.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Retroalimentação Fisiológica , Neoplasias/patologia , Norepinefrina/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Animais , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Neoplasias/mortalidade , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Receptor trkB/metabolismo , Transdução de Sinais , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Cell ; 33(6): 965-983, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29657130

RESUMO

Besides their function in limiting blood loss and promoting wound healing, experimental evidence has highlighted platelets as active players in all steps of tumorigenesis including tumor growth, tumor cell extravasation, and metastasis. Additionally, thrombocytosis in cancer patients is associated with adverse patient survival. Due to the secretion of large amounts of microparticles and exosomes, platelets are well positioned to coordinate both local and distant tumor-host crosstalk. Here, we present a review of recent discoveries in the field of platelet biology and the role of platelets in cancer progression as well as challenges in targeting platelets for cancer treatment.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Neoplasias/metabolismo , Animais , Plaquetas/fisiologia , Progressão da Doença , Humanos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/fisiopatologia , Trombocitose/fisiopatologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA