Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
JMIR Med Inform ; 12: e49997, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250782

RESUMO

BACKGROUND: A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm development approaches have limitations that can slow the development process. These limitations are exacerbated when the task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE: This study aims to highlight the current limitations of existing NLP algorithm development approaches that are exacerbated by NLP tasks surrounding emergent clinical concepts and to illustrate our approach to addressing these issues through the use case of developing an NLP system for the signs and symptoms of COVID-19 and PASC. METHODS: We used 2 preexisting studies on PASC as a baseline to determine a set of concepts that should be extracted by NLP. This concept list was then used in conjunction with the Unified Medical Language System to autonomously generate an expanded lexicon to weakly annotate a training set, which was then reviewed by a human expert to generate a fine-tuned NLP algorithm. The annotations from a fully human-annotated test set were then compared with NLP results from the fine-tuned algorithm. The NLP algorithm was then deployed to 10 additional sites that were also running our NLP infrastructure. Of these 10 sites, 5 were used to conduct a federated evaluation of the NLP algorithm. RESULTS: An NLP algorithm consisting of 12,234 unique normalized text strings corresponding to 2366 unique concepts was developed to extract COVID-19 or PASC signs and symptoms. An unweighted mean dictionary coverage of 77.8% was found for the 5 sites. CONCLUSIONS: The evolutionary and time-critical nature of the PASC NLP task significantly complicates existing approaches to NLP algorithm development. In this work, we present a hybrid approach using the Open Health Natural Language Processing Toolkit aimed at addressing these needs with a dictionary-based weak labeling step that minimizes the need for additional expert annotation while still preserving the fine-tuning capabilities of expert involvement.

2.
medRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39228707

RESUMO

Structured representations of clinical data can support computational analysis of individuals and cohorts, and ontologies representing disease entities and phenotypic abnormalities are now commonly used for translational research. The Medical Action Ontology (MAxO) provides a computational representation of treatments and other actions taken for the clinical management of patients. Currently, manual biocuration is used to assign MAxO terms to rare diseases, enabling clinical management of rare diseases to be described computationally for use in clinical decision support and mechanism discovery. However, it is challenging to scale manual curation to comprehensively capture information about medical actions for the more than 10,000 rare diseases. We present AutoMAxO, a semi-automated workflow that leverages Large Language Models (LLMs) to streamline MAxO biocuration for rare diseases. AutoMAxO first uses LLMs to retrieve candidate curations from abstracts of relevant publications. Next, the candidate curations are matched to ontology terms from MAxO, Human Phenotype Ontology (HPO), and MONDO disease ontology via a combination of LLMs and post-processing techniques. Finally, the matched terms are presented in a structured form to a human curator for approval. We used this approach to process 4,918 unique medical abstracts and identified annotations for 21 rare genetic diseases, we extracted 18,631 candidate disease-treatment curations, 538 of which were confirmed and transferred to the MAxO annotation dataset. The results of this project underscore the potential of generative AI to accelerate precision medicine by enabling a robust and comprehensive curation of the primary literature to represent information about diseases and procedures in a structured fashion. Although we focused on MAxO in this project, similar approaches could be taken for other biomedical curation tasks.

3.
bioRxiv ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39345458

RESUMO

Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.

4.
medRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39108510

RESUMO

Large language models (LLM) have shown great promise in supporting differential diagnosis, but 23 available published studies on the diagnostic accuracy evaluated small cohorts (number of cases, 30-422, mean 104) and have evaluated LLM responses subjectively by manual curation (23/23 studies). The performance of LLMs for rare disease diagnosis has not been evaluated systematically. Here, we perform a rigorous and large-scale analysis of the performance of a GPT-4 in prioritizing candidate diagnoses, using the largest-ever cohort of rare disease patients. Our computational study used 5267 computational case reports from previously published data. Each case was formatted as a Global Alliance for Genomics and Health (GA4GH) phenopacket, in which clinical anomalies were represented as Human Phenotype Ontology (HPO) terms. We developed software to generate prompts from each phenopacket. Prompts were sent to Generative Pre-trained Transformer 4 (GPT-4), and the rank of the correct diagnosis, if present in the response, was recorded. The mean reciprocal rank of the correct diagnosis was 0.24 (with the reciprocal of the MRR corresponding to a rank of 4.2), and the correct diagnosis was placed in rank 1 in 19.2% of the cases, in the first 3 ranks in 28.6%, and in the first 10 ranks in 32.5%. Our study is the largest to be reported to date and provides a realistic estimate of the performance of GPT-4 in rare disease medicine.

5.
medRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38947087

RESUMO

Post-Acute Sequelae of SARS-CoV-2 infection (PASC), also known as Long-COVID, encompasses a variety of complex and varied outcomes following COVID-19 infection that are still poorly understood. We clustered over 600 million condition diagnoses from 14 million patients available through the National COVID Cohort Collaborative (N3C), generating hundreds of highly detailed clinical phenotypes. Assessing patient clinical trajectories using these clusters allowed us to identify individual conditions and phenotypes strongly increased after acute infection. We found many conditions increased in COVID-19 patients compared to controls, and using a novel method to associate patients with clusters over time, we additionally found phenotypes specific to patient sex, age, wave of infection, and PASC diagnosis status. While many of these results reflect known PASC symptoms, the resolution provided by this unprecedented data scale suggests avenues for improved diagnostics and mechanistic understanding of this multifaceted disease.

6.
Transl Psychiatry ; 14(1): 246, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851761

RESUMO

Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective electronic health record (EHR) cohort study of 2,391,006 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 76 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There were significant associations between a diagnosis of any psychiatric disease and five categories of PASC-AMs with odds ratios highest for neurological, cardiovascular, and constitutional PASC-AMs with odds ratios of 1.31, 1.29, and 1.23 respectively. Secondary analysis revealed that the proportions of 50 individual clinical features significantly differed between patients diagnosed with different psychiatric diseases. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings.


Assuntos
COVID-19 , Transtornos Mentais , SARS-CoV-2 , Humanos , COVID-19/psicologia , COVID-19/complicações , COVID-19/epidemiologia , Masculino , Feminino , Transtornos Mentais/epidemiologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Fenótipo , Síndrome de COVID-19 Pós-Aguda , Comorbidade , Registros Eletrônicos de Saúde , Adulto Jovem , Fatores de Risco , Adolescente
7.
ArXiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883236

RESUMO

Background ­: Limited universally adopted data standards in veterinary science hinders data interoperability and therefore integration and comparison; this ultimately impedes application of existing information-based tools to support advancement in veterinary diagnostics, treatments, and precision medicine. Hypothesis/Objectives ­: Creation of a Vertebrate Breed Ontology (VBO) as a single, coherent logic-based standard for documenting breed names in animal health, production and research-related records will improve data use capabilities in veterinary and comparative medicine. Animals ­: No live animals were used in this study. Methods ­: A list of breed names and related information was compiled from relevant sources, organizations, communities, and experts using manual and computational approaches to create VBO. Each breed is represented by a VBO term that includes all provenance and the breed's related information as metadata. VBO terms are classified using description logic to allow computational applications and Artificial Intelligence-readiness. Results ­: VBO is an open, community-driven ontology representing over 19,000 livestock and companion animal breeds covering 41 species. Breeds are classified based on community and expert conventions (e.g., horse breed, cattle breed). This classification is supported by relations to the breeds' genus and species indicated by NCBI Taxonomy terms. Relationships between VBO terms, e.g. relating breeds to their foundation stock, provide additional context to support advanced data analytics. VBO term metadata includes common names and synonyms, breed identifiers/codes, and attributed cross-references to other databases. Conclusion and clinical importance ­: Veterinary data interoperability and computability can be enhanced by the adoption of VBO as a source of standard breed names in databases and veterinary electronic health records.

8.
medRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854034

RESUMO

The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.

9.
JMIR Mhealth Uhealth ; 12: e54622, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696234

RESUMO

BACKGROUND: Postpartum depression (PPD) poses a significant maternal health challenge. The current approach to detecting PPD relies on in-person postpartum visits, which contributes to underdiagnosis. Furthermore, recognizing PPD symptoms can be challenging. Therefore, we explored the potential of using digital biomarkers from consumer wearables for PPD recognition. OBJECTIVE: The main goal of this study was to showcase the viability of using machine learning (ML) and digital biomarkers related to heart rate, physical activity, and energy expenditure derived from consumer-grade wearables for the recognition of PPD. METHODS: Using the All of Us Research Program Registered Tier v6 data set, we performed computational phenotyping of women with and without PPD following childbirth. Intraindividual ML models were developed using digital biomarkers from Fitbit to discern between prepregnancy, pregnancy, postpartum without depression, and postpartum with depression (ie, PPD diagnosis) periods. Models were built using generalized linear models, random forest, support vector machine, and k-nearest neighbor algorithms and evaluated using the κ statistic and multiclass area under the receiver operating characteristic curve (mAUC) to determine the algorithm with the best performance. The specificity of our individualized ML approach was confirmed in a cohort of women who gave birth and did not experience PPD. Moreover, we assessed the impact of a previous history of depression on model performance. We determined the variable importance for predicting the PPD period using Shapley additive explanations and confirmed the results using a permutation approach. Finally, we compared our individualized ML methodology against a traditional cohort-based ML model for PPD recognition and compared model performance using sensitivity, specificity, precision, recall, and F1-score. RESULTS: Patient cohorts of women with valid Fitbit data who gave birth included <20 with PPD and 39 without PPD. Our results demonstrated that intraindividual models using digital biomarkers discerned among prepregnancy, pregnancy, postpartum without depression, and postpartum with depression (ie, PPD diagnosis) periods, with random forest (mAUC=0.85; κ=0.80) models outperforming generalized linear models (mAUC=0.82; κ=0.74), support vector machine (mAUC=0.75; κ=0.72), and k-nearest neighbor (mAUC=0.74; κ=0.62). Model performance decreased in women without PPD, illustrating the method's specificity. Previous depression history did not impact the efficacy of the model for PPD recognition. Moreover, we found that the most predictive biomarker of PPD was calories burned during the basal metabolic rate. Finally, individualized models surpassed the performance of a conventional cohort-based model for PPD detection. CONCLUSIONS: This research establishes consumer wearables as a promising tool for PPD identification and highlights personalized ML approaches, which could transform early disease detection strategies.


Assuntos
Biomarcadores , Depressão Pós-Parto , Dispositivos Eletrônicos Vestíveis , Humanos , Depressão Pós-Parto/diagnóstico , Depressão Pós-Parto/psicologia , Feminino , Adulto , Biomarcadores/análise , Estudos Transversais , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos , Dispositivos Eletrônicos Vestíveis/normas , Aprendizado de Máquina/normas , Gravidez , Estados Unidos , Conjuntos de Dados como Assunto , Curva ROC
10.
Int J Med Inform ; 187: 105461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643701

RESUMO

OBJECTIVE: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (for example, endometriosis, ovarian cyst, and uterine fibroids). MATERIALS AND METHODS: We harmonized survey data from the Personalized Environment and Genes Study (PEGS) on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. RESULTS: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant or suggestive predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. DISCUSSION: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal but can support hypothesis generation. CONCLUSION: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.


Assuntos
Exposição Ambiental , Humanos , Feminino , Exposição Ambiental/efeitos adversos , Doenças dos Genitais Femininos , Modelos Logísticos , Estado Nutricional , Dieta , Adulto , Algoritmo Florestas Aleatórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...