Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 23(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435225

RESUMO

Salient features of hybrid nanofluid (MoS2-SiO2/water) for Darcy-Forchheimer-Brinkman porous space with variable characteristics is examined. Heat transfer analysis subject to viscous dissipation, nonlinear thermal radiation, and heat generation/absorption is carried out. Disturbance inflow is created by an exponentially stretching curved sheet. Relevant equations are simplified by employing boundary layer theory. Adequate transformations lead to a set of dimensionless equations. Velocity, temperature, and entropy generation rate are analyzed graphically. Comparative results are obtained for hybrid (MoS2-SiO2/water) and nanofluid (MoS2-water and SiO2-water). Physical quantities are analyzed through numerical data.

2.
PLoS One ; 12(7): e0179576, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686643

RESUMO

Here we are concerned with the Darcy-Forchheimer three-dimensional flow of carbon nanotubes in a rotating frame. Flow is generated by stretching of the surface. Xue model is adopted for nanofluid transport mechanism. Results for single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes are achieved and compared. Flow saturating porous space obeys Darcy-Forchheimer expression. Boundary layer approximations are invoked to simplify governing partial differential system. Optimal homotopy analysis method (OHAM) is utilized for solutions of governing model. The optimal values of auxiliary parameters are computed. Plots have been displayed in order to analyze how the velocities and temperature fields get affected by various flow parameters. Skin-friction coefficients and local Nusselt number are presented through numerical data for both SWCNTs and MWCNTs. Moreover the skin-friction coefficients and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.


Assuntos
Modelos Químicos , Nanoestruturas/química , Nanotubos de Carbono/química , Algoritmos , Convecção , Nanopartículas , Porosidade , Propriedades de Superfície , Condutividade Térmica
3.
PLoS One ; 12(4): e0174938, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28380014

RESUMO

Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field.


Assuntos
Condutividade Térmica , Queimaduras/etiologia , Elasticidade , Fricção , Temperatura Alta , Humanos , Modelos Teóricos , Fenômenos Fisiológicos da Pele , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...