Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biopreserv Biobank ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634668

RESUMO

Cryopreservation of avian semen is a useful reproductive technique in the poultry industry. However, during cooling, elevated reactive oxygen species (ROS) levels have destructive effects on both quality and function of thawed sperm. The aim of the current study is to investigate the antioxidant effects of N-acetylcysteine (NAC) during rooster semen cryopreservation. Semen samples were collected from ten Ross 308 broiler breeder roosters (32 weeks) and mixed. The mixed samples were divided into five equal parts and cryopreserved in Lake Buffer extender that contained different concentrations (0, 0.01, 0.1, 1, and 10 mM) of NAC. The optimum concentration of NAC was determined based on quality parameters of mobility, viability, membrane integrity, acrosome integrity, lipid peroxidation, and mitochondrial membrane potential after the freeze-thaw process. There was a higher percentage (p < 0.05) of total motility (TM) (60.9 ± 2.4%) and progressive motility (PM) (35.6 ± 1.9%) observed with the NAC-0.1 group compared to the other groups. Significantly higher percentages of viability (74.4 ± 2.3% and 71 ± 2.3%), membrane integrity (76.4 ± 1.5% and 74.7 ± 1.5%) and mitochondrial membrane potential (67.1 ± 1.6% and 66.3 ± 1.6%) were observed in the NAC-0.1 and NAC-1 groups compared to the other frozen groups (p < 0.05). The lowest percentage of lipid peroxidation and nonviable sperm was found in the NAC-0.1 and NAC-1 groups compared to the other groups (p < 0.05). The average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and acrosome integrity, were not affected by different concentrations of NAC in the thawed sperm (p > 0.05). Both NAC-0.1 and NAC-1 appear to be beneficial for maintaining the quality of rooster sperm after thawing.

2.
Opt Express ; 21(3): 3342-53, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481794

RESUMO

Frequency shift keyed (FSK) modulation formats are well-suited to deep space links and other high loss links. FSK's advantage comes from its use of bandwidth expansion. I.e., FSK counteracts power losses in the link by using an optical bandwidth that is greater than the data rate, just as pulse position modulation (PPM) does. Unlike PPM, increasing FSK's bandwidth expansion does not require increased bandwidth in electronic components. We present an FSK modulator whose component count rises logarithmically with the bandwidth expansion. We tested it with four-fold bandwidth expansion at 5 and 20 Gbit/s. When paired with a pre-amplified receiver, the required received power was about 4 and 5 dB from the theoretical best for such receivers. We also tested the FSK transmitter with a photon counting receiver.


Assuntos
Dispositivos Ópticos , Astronave/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...