Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309786, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760898

RESUMO

A universal approach for enhancing water affinity in polymer photocatalysts by covalently attaching hydrophilic photocrosslinkers to polymer chains is presented. A series of bisdiazirine photocrosslinkers, each comprising bisdiazirine photophores linked by various aliphatic (CL-R) or ethylene glycol-based bridge chains (CL-TEG), is designed to prevent crosslinked polymer photocatalysts from degradation through a safe and efficient photocrosslinking reaction at a wavelength of 365 nm. When employing the hydrophilic CL-TEG as a photocrosslinker with polymer photocatalysts (F8BT), the hydrogen evolution reaction (HER) rate is considerably enhanced by 2.5-fold compared to that obtained using non-crosslinked F8BT photocatalysts, whereas CL-R-based photocatalysts yield HER rates comparable to those of non-crosslinked counterparts. Photophysical analyses including time-resolved photoluminescence and transient absorption measurements reveal that adding CL-TEG accelerates exciton separation, forming long-lived charge carriers. Additionally, the in-depth study using molecular dynamics simulations elucidates the dual role of CL-TEG: it enhances water penetration into the polymer matrix and stabilizes charge carriers after exciton generation against undesirable recombination. Therefore, the strategy highlights endowing a high-permittivity environment within polymer photocatalyst in a controlled manner is crucial for enhancing photocatalytic redox reactivity. Furthermore, this study shows that this hydrophilic crosslinker approach has a broad applicability in general polymer semiconductors and their nanoparticulate photocatalysts.

2.
Small Methods ; : e2400302, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634222

RESUMO

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) have gained interest as candidates for the bottom cell of all-perovskite tandem solar cells due to their broad absorption of the solar spectrum. A notable challenge arises from the prevalent use of the hole transport layer, PEDOT:PSS, known for its inherently high doping level. This high doping level can lead to interfacial recombination, imposing a significant limitation on efficiency. Herein, NaOH is used to dedope PEDOT:PSS, with the aim of enhancing the efficiency of Sn-Pb PSCs. Secondary ion mass spectrometer profiles indicate that sodium ions diffuse into the perovskite layer, improving its crystallinity and enlarging its grains. Comprehensive evaluations, including photoluminescence and nanosecond transient absorption spectroscopy, confirm that dedoping significantly reduces interfacial recombination, resulting in an open-circuit voltage as high as 0.90 V. Additionally, dedoping PEDOT:PSS leads to increased shunt resistance and high fill factor up to 0.81. As a result of these improvements, the power conversion efficiency is enhanced from 19.7% to 22.6%. Utilizing NaOH to dedope PEDOT:PSS also transitions its nature from acidic to basic, enhancing stability and exhibiting less than a 7% power conversion efficiency loss after 1176 h of storage in N2 atmosphere.

3.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630003

RESUMO

In this study, we present a comprehensive investigation into the charge generation mechanism in bulk-heterojunction organic solar cells employing non-fullerene acceptors (NFAs) both with and without the presence of processing additives. While photovoltaic devices based on Y6 or BTP-eC9 have shown remarkable power conversion efficiencies, the underlying charge generation mechanism in polymer:NFA blends remains poorly understood. To shed light on this, we employ transient absorption (TA) spectroscopy to elucidate the charge transfer pathway within a blend of the donor polymer PM6 and NFAs. Interestingly, the charge carrier lifetimes of neat Y6 and BTP-eC9 are comparable, both reaching up to 20 ns. However, the PM6:BTP-eC9 blend exhibits substantially higher charge carrier generation and a longer carrier lifetime compared to PM6:Y6 blend films, leading to superior performance. By comparing TA data obtained from PM6:Y6 or PM6:BTP-eC9 blend films with and without processing additives, we observe significantly enhanced charge carrier generation and prolonged charge carrier lifetimes in the presence of these additives. These findings underscore the potential of manipulating excited species as a promising avenue for further enhancing the performance of organic solar cells. Moreover, this understanding contributes to the advancement of NFA-based systems and the optimization of charge transfer processes in polymer:NFA blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...