Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 855
Filtrar
1.
Front Immunol ; 15: 1444639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359722

RESUMO

Introduction: We reported that Ca2+-independent phospholipase A2ß (iPLA2ß)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4+ and CD8+ T cells are critical in promoting ß-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development. Methods: CD4+ and CD8+ T cells from wild-type non-obese diabetic (NOD) and NOD.iPLA2ß+/- (NOD.HET) mice were administered in different combinations to immunodeficient NOD.scid. Results: In mice receiving only NOD T cells, T1D onset was rapid (5 weeks), incidence 100% by 20 weeks, and islets absent. In contrast, onset was delayed 1 week and incidence reduced 40%-50% in mice receiving combinations that included NOD.HET T cells. Consistently, islets from these non-diabetic mice were devoid of infiltrate and contained insulin-positive ß-cells. Reduced iPLA2ß led to decreased production of proinflammatory lipids from CD4+ T cells including prostaglandins and dihydroxyeicosatrienoic acids (DHETs), products of soluble epoxide hydrolase (sEH), and inhibition of their signaling decreased (by 82%) IFNγ+CD4+ cells abundance. However, only DHETs production was reduced from CD8+ T cells and was accompanied by decreases in sEH and granzyme B. Discussion: These findings suggest that differential select iDL signaling in CD4+ and CD8+ T cells contributes to T1D development, and that therapeutics targeting such signaling might be considered to counter T1D.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Camundongos Endogâmicos NOD , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Fosfolipases A2 do Grupo VI/metabolismo , Fosfolipases A2 do Grupo VI/genética , Metabolismo dos Lipídeos , Camundongos SCID , Feminino
2.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230393

RESUMO

The increasing emphasis on the quality and safety of agricultural products, which are vital to global trade and consumer health, has driven the innovation of cost-effective, convenient, and rapid smart detection technologies. Smartphones, with their interdisciplinary functionalities, have become valuable tools in quantification and analysis research. Acting as portable, affordable, and user-friendly analytical devices, smartphones are equipped with high-resolution cameras, displays, memory, communication modules, sensors, and operating systems (Android or IOS), making them powerful, palm-sized remote computers. This review delves into how visual inspection technology and smartphones have enhanced the quality and safety of agricultural products over the past decade. It also evaluates the key features and limitations of existing smart rapid inspection methods for agricultural products and anticipates future advancements, offering insights into the application of smart rapid inspection technology in agriculture.

3.
Clin Transl Sci ; 17(9): e70033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300734

RESUMO

Chronic pain represents a significant unmet medical need, affecting one-fifth of the U.S. population. EC5026 is a small molecule inhibitor of the enzyme soluble epoxide hydrolase (sEH) which is being developed as a novel non-opioid, non-NSAID analgesic. EC5026 prolongs the action of epoxy fatty acids, endogenous analgesic lipid mediators that are rapidly metabolized by sEH. We evaluated the safety and pharmacokinetic profile of EC5026 in two phase I trials, a single-ascending dose (SAD) study and a fed-fasted study. The SAD study evaluated EC5026 doses ranging from 0.5 to 24 mg in healthy volunteers. EC5026 was well tolerated. No treatment-emergent adverse events were considered related to EC5026. No apparent treatment- or dose-related trends in laboratory results, vital signs, physical examinations, or electrocardiograms were observed. A linear, near-dose-proportional increase in exposure was observed with progressive doses in the SAD study; plasma exposure was below or near the lower limit of quantification after 0.5-2 mg doses. Mean half-lives ranged from 41.8 to 59.1 h. for doses of 8-24 mg, supporting a once-daily dosing regimen. In the fed-fasted study using 8 mg EC5026 tablets, higher peak concentrations (66%) and total exposures (53%) were observed under the fed condition. Plasma concentrations declined in a monoexponential manner with mean half-lives of 59.5 h. in the fed state and 66.9 h. in the fasted state. Future clinical trials using EC5026 for the treatment of pain are justified based on the favorable outcomes from both clinical trials along with preclinical evidence of analgesic activity.


Assuntos
Interações Alimento-Droga , Voluntários Saudáveis , Humanos , Adulto , Masculino , Método Duplo-Cego , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga , Epóxido Hidrolases/antagonistas & inibidores , Jejum/sangue , Adolescente , Administração Oral , Meia-Vida
4.
Diabetes ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283670

RESUMO

Type 1 diabetes (T1D) is a consequence of autoimmune destruction of ß-cells and macrophages (MΦ) have a central role in initiating processes that lead to ß-cell demise. We reported that Ca2+-independent phospholipase A2ß (iPLA2ß)-derived lipid (iDL) signaling contributes to ß-cell death. As MΦ express iPLA2ß, we assessed its role in T1D development. We find that selective reduction of myeloid-iPLA2ß in spontaneously diabetes-prone nonobese diabetic (NOD) mice (a) deceases proinflammatory eicosanoid production by MΦ, (b) favors anti-inflammatory (M2-like) MΦ phenotype, and (c) diminishes activated CD4+ and CD8+ T-cells phenotype in the pancreatic infiltrate, prior to T1D onset. These outcomes are associated with a significant reduction in T1D. Further, inhibition of select proinflammatory lipid signaling pathways reduces M1-like MΦ polarization and adoptive transfer of M2-like MΦ reduces NOD T1D incidence, suggesting a mechanism by which iDLs impact T1D development. These findings identify MΦ-iPLA2ß as a critical contributor to TID development and potential target to counter T1D onset.

5.
J Periodontal Res ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343738

RESUMO

AIMS: Periodontitis is a prevalent inflammatory disorder affecting the oral cavity, driven by dysbiotic oral biofilm and host immune response interactions. While the major clinical focus of periodontitis treatment is currently controlling oral biofilm, understanding the immune response is crucial to prevent disease progression. Soluble epoxide hydrolase (sEH) inhibition has shown promise in preventing alveolar bone resorption. Triggering receptors expressed on myeloid cells (TREMs) play pivotal roles in regulating inflammation and bone homeostasis, and dysregulation of TREM signaling is implicated in periodontitis. Here, we investigated the impact of sEH inhibition on TREM 1 and 2 expression, associated with inflammatory cytokines, and histologically assessed the inflammatory infiltrate in periodontal tissue. METHODS: The experimental periodontitis model was induced by placing a ligature around the upper second molar. For 14 days, animals were treated daily with a sEH inhibitor (TPPU) or vehicle. The alveolar bone loss was examined using a methylene blue stain. Gingival tissues were used to measure the mRNA expression of TREM-1, TREM-2, IKKß, NF-κB, IL-1ß, IL-6, IL-8, and TNF-α by RT-qPCR. Another set of experiments was performed to determine the histological inflammatory scores. RESULTS: In a ligature-induced periodontitis model, sEH inhibition prevented alveolar bone loss and reduced TREM1 expression, albeit with a slight elevation compared to the disease-free group. In contrast, TREM2 expression remained elevated, suggesting sustained immunomodulation favoring resolution. The inhibition of sEH reduced the expression of NF-κB, IL-1ß, and TNF-α, while no differences were found in the expression of IL-6, IL-8, and IKKß. In histological analysis, sEH inhibition reduced the inflammatory leukocyte infiltrate in periodontal tissues close to the ligature. CONCLUSION: These findings underscore the potential of sEH inhibition to modulate periodontal inflammation by regulating TREM-1 alongside decreased IL-1ß and TNF-α expression, highlighting a promising therapeutic approach for periodontitis management.

6.
bioRxiv ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39257786

RESUMO

Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.

7.
BBA Adv ; 6: 100119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246819

RESUMO

Pain arising from trigeminal systems such as headache is common, debilitating, and current treatments (e.g., sumatriptan) are limited. New treatments that target novel mechanisms of action may be required to innovate both short- and long-term pain therapy. Fatty acid amide hydrolase and soluble epoxide hydrolase are two pain-related enzymes that regulate pain and inflammation via independent pathways. We have previously demonstrated that simultaneous inhibition of these enzymes using a novel dual inhibitor alleviates acute inflammatory pain in the hindpaw and does not depress wheel running in rats. Here, we expanded on these findings and performed structure-activity relationships of our lead compound, the 4-phenyl-thiazole-based dual inhibitor SW-17, to generate 18 analogs and tested them for their inhibition at both enzymes. Conversion of the sulfonamide group to a tertiary amine led to a general decrease in the potency for the sEH enzyme, while this change was well-tolerated at the FAAH enzyme yielding several strong inhibitors. Six selected inhibitors were evaluated in mouse and rat sEH inhibition assays and results showed a species difference, i.e. 4-phenyl-thiazole-based analogs are significantly less or not active in mouse sEH compared to human and rat enzymes. The most potent inhibitor, SW-17, was evaluated in a plasma stability assay in human and rat plasma and showed moderate stability. However, SW-17 did not alleviate orofacial inflammatory pain in female rats compared to the traditional anti-migraine agent sumatriptan. Although modification of 4-phenyl-thiazole-based dual inhibitor SW-17 changes potencies at both FAAH and sEH, these approaches may not produce antinociception against trigeminal pain. Key Words: polypharmacology, formalin, inflammation, enzyme inhibition, structure-activity relationship studies.

8.
PLoS One ; 19(9): e0309728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39226266

RESUMO

Monosodium glutamate (MSG) is a widely used food additive with conflicting evidence regarding its potential effects on human health, with proposed relevance for obesity and metabolic syndrome (MetS) or chronic kidney disease. As being able to accurately quantify the MSG dietary intake would help clarify the open issues, we constructed a predictive formula to estimate the daily intake of MSG in a rat model based on the urinary metabolic profile. Adult male Wistar rats were divided into groups receiving different daily amounts of MSG in drinking water (0.5, 1.5, and 3.0 g%), no MSG, and MSG withdrawal after 3.0% MSG treatment for 4 weeks. We then analyzed 24-hour urine samples for chemistries and metabolites using 1H NMR spectrometry and observed a strong correlation between urine pH, sodium, bicarbonate, alpha-ketoglutarate, citrate, fumarate, glutamate, methylamine, N-methyl-4-pyridone-3-carboxamide, succinate, and taurine and the daily MSG intake. Following the multiple linear regression analysis a simple formula model based on urinary Na+, citrate, and glutamate was most accurate and could be validated for estimating daily MSG intake. In conclusion, we propose that the daily MSG intake correlates with urinary metabolites in a rat model and that this new tool for monitoring the impact of MSG on health measures.


Assuntos
Metaboloma , Ratos Wistar , Glutamato de Sódio , Animais , Masculino , Ratos , Metaboloma/efeitos dos fármacos
9.
Talanta ; 279: 126634, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121553

RESUMO

Macroporous three-dimensional (3D) framework structured melamine foam-based Enzyme-Linked Immunosorbent Assay (f-ELISA) biosensors were developed for rapid, reliable, sensitive, and on-site detection of trace amount of biomolecules and chemicals. Various ligands can be chemically immobilized onto the melamine foam, which brings in the possibility of working with antibodies, nanobodies, and peptides, respectively, as affinity probes for f-ELISA biosensors with improved stability. Different chemical reagents can be used to modify the foam materials, resulting in varied reactivities with antibodies, nanobodies, and peptides. As a result, the f-ELISA sensors produced from these modified foams exhibit varying levels of sensitivity and performance. This study demonstrated that the chemical reagents used for immobilizing antibodies, nanobodies, and peptides could affect the sensitivities of the f-ELISA sensors, and their storage stabilities under different temperatures varied depending on the sensing probes used, with f-ELISA sensors employing nanobodies as probes exhibiting the highest stability. This study not only showcases the versatility of the f-ELISA system but also opens new avenues for developing cost-effective, portable, and user-friendly diagnostic tools with optimized sensitivity and stability.


Assuntos
Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Anticorpos de Domínio Único , Triazinas , Triazinas/análise , Triazinas/química , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Técnicas Biossensoriais/métodos , Peptídeos/química , Anticorpos/imunologia , Anticorpos/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Limite de Detecção
10.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201526

RESUMO

Inhibition of soluble epoxide hydrolase (sEH) is a promising therapeutic strategy for treating neuropathic pain. These inhibitors effectively reduce diabetic neuropathic pain and inflammation induced by Freund's adjuvant which makes them a suitable alternative to traditional opioids. This study showcased the notable analgesic effects of compound AMHDU (1,1'-(hexane-1,6-diyl)bis(3-((adamantan-1-yl)methyl)urea)) in both inflammatory and diabetic neuropathy models. While lacking anti-inflammatory properties in a paw edema model, AMHDU is comparable to celecoxib as an analgesic in 30 mg/kg dose administrated by intraperitoneal injection. In a diabetic tactile allodynia model, AMHDU showed a prominent analgesic activity in 10 mg/kg intraperitoneal dose (p < 0.05). The effect is comparable to that of gabapentin, but without the risk of dependence due to a different mechanism of action. Low acute oral toxicity (>2000 mg/kg) and a high therapeutic index makes AMHDU a promising candidate for further structure optimization and preclinical evaluation.


Assuntos
Analgésicos , Epóxido Hidrolases , Neuralgia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Animais , Neuralgia/tratamento farmacológico , Masculino , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Ureia/análogos & derivados , Ureia/farmacologia , Avaliação Pré-Clínica de Medicamentos , Edema/tratamento farmacológico , Ratos , Adamantano/análogos & derivados , Adamantano/farmacologia , Adamantano/uso terapêutico
11.
Sci Rep ; 14(1): 19135, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160161

RESUMO

Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.


Assuntos
Sistema Enzimático do Citocromo P-450 , Epóxido Hidrolases , Herbicidas , Lipidômica , Fígado , Triazinas , Animais , Epóxido Hidrolases/metabolismo , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Triazinas/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Herbicidas/toxicidade , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxilipinas/metabolismo
12.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39211216

RESUMO

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme involved in fatty acid metabolism and promising drug target. We previously reported first-generation sEH proteolysis-targeting chimeras (PROTACs) with limited degradation potency and low aqueous and metabolic stability. Herein, we report the development of next-generation sEH PROTAC molecules with improved stability and degradation potency. One of the most potent molecules (compound 8 ) exhibits a half-maximal degradation concentration in the sub-nM range, is stable in vivo , and effectively degrades sEH in mouse livers and brown adipose tissues. Given the role played by sEH in many metabolic and nonmetabolic diseases, the presented molecules provide useful chemical probes for the study of sEH biology. They also hold potential for therapeutic development against a range of disease conditions, including diabetes, inflammation, and metabolic disorders.

13.
J Hazard Mater ; 477: 135264, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032175

RESUMO

Nontoxic substitutes to mycotoxins can facilitate the development of eco-friendly immunoassays. To explore a novel nontoxic substitute to ochratoxin A (OTA), this study screened shark anti-idiotypic variable new antigen receptors (VNARs) against the alpaca anti-OTA nanobody Nb28 through phage display. After four rounds of biopanning of a naïve VNAR phage display library derived from six adult Chiloscyllium plagiosum sharks, one positive clone, namely, P-3, was validated through a phage enzyme-linked immunosorbent assay (phage ELISA). The recombinant anti-idiotypic VNAR AId-V3 was obtained by prokaryotic expression, and the interactions between Nb28 and AId-V3 were investigated via computer-assisted simulation. The affinity of AId-V3 for Nb28 and its heptamer Nb28-C4bpα was measured using Biacore assay. Combining Nb28-C4bpα with AId-V3, a novel direct competitive ELISA (dcELISA) was developed for OTA analysis, with a limit of detection of 0.44 ng/mL and a linear range of 1.77-32.25 ng/mL. The good selectivity, reliability, and precision of dcELISA were confirmed via cross-reaction analysis and recovery experiments. Seven commercial pepper powder samples were tested using dcELISA and validated using high-performance liquid chromatography. Overall, the shark anti-idiotypic VNAR was demonstrated as a promising nontoxic substitute to OTA, and the proposed method was confirmed as a reliable tool for detecting OTA in food.


Assuntos
Camelídeos Americanos , Ensaio de Imunoadsorção Enzimática , Ocratoxinas , Tubarões , Anticorpos de Domínio Único , Ocratoxinas/análise , Ocratoxinas/imunologia , Tubarões/imunologia , Animais , Camelídeos Americanos/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Anticorpos Anti-Idiotípicos/imunologia , Receptores de Antígenos/imunologia
14.
J Med Chem ; 67(15): 12887-12911, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39033411

RESUMO

Soluble epoxide hydrolase (sEH) and HDAC6 mediate the NF-κB pathway in inflammatory responses, and their inhibitors exhibit powerful anti-inflammatory and analgesic activities in treating both inflammation and pain. Therefore, a series of dual-targeting inhibitors containing urea or squaramide and hydroxamic acid moieties were designed and synthesized, and their role as a new sEH/HDAC6 dual-targeting inhibitor in inflammatory pain was evaluated in a formalin-induced mice model and a xylene-induced mouse ear swelling model. Among them, compounds 28g and 28j showed the best inhibitory and selectivity of sEH and HDAC6. Compound 28g had satisfactory pharmacokinetic characteristics in rats. Following administration at 30 mg/kg, compound 28g exhibited more effective analgesic activity than either an sEH inhibitor (GL-B437) or an HDAC6 inhibitor (Rocilinostat) alone and coadministration of both inhibitors. Thus, these novel sEH/HDAC6 dual-targeting inhibitors exhibited powerful analgesic activity in nociceptive behavior and are worthy of further development.


Assuntos
Analgésicos , Desenho de Fármacos , Epóxido Hidrolases , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Inflamação , Dor , Animais , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Dor/tratamento farmacológico , Camundongos , Inflamação/tratamento farmacológico , Analgésicos/síntese química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/farmacocinética , Analgésicos/química , Masculino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacocinética , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Humanos
16.
Biosensors (Basel) ; 14(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39056598

RESUMO

Patulin, an emerging mycotoxin with high toxicity, poses great risks to public health. Considering the poor antibody production in patulin immunization, this study focuses on the four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics to reveal the immune response of patulin in rabbits. The rabbit immunization was performed with the complete developed antigens of patulin, followed by the identification of the immune serum. A total of 554 differential proteins, including 292 up-regulated proteins and 262 down-regulated proteins, were screened; the differential proteins were annotated; and functional enrichment analysis was performed. The differential proteins were associated with the pathways of metabolism, gene information processing, environmental information processing, cellular processes, and organismal systems. The functional enrichment analysis indicated that the immunization procedures mostly resulted in the regulation of biochemical metabolic and signal transduction pathways, including the biosynthesis of amino acid (glycine, serine, and threonine), ascorbate, and aldarate metabolism; fatty acid degradation; and antigen processing and presentation. The 14 key proteins with high connectivity included G1U9T1, B6V9S9, G1SCN8, G1TMS5, G1U9U0, A0A0G2JH20, G1SR03, A0A5F9DAT4, G1SSA2, G1SZ14, G1T670, P30947, P29694, and A0A5F9C804, which were obtained by the analysis of protein-protein interaction networks. This study could provide potential directions for protein interaction and antibody production for food hazards in animal immunization.


Assuntos
Patulina , Proteômica , Animais , Coelhos
17.
Chem Eng J ; 4912024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38882000

RESUMO

Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.

18.
Heliyon ; 10(11): e32262, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912512

RESUMO

Simultaneous inhibition of soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) with a single small molecule represents a novel therapeutic approach in treating inflammatory pain, since both targets are involved in pain and inflammation processes. In this study using multi-target directed ligands methodology we designed and synthesized 7 quinolinyl-based dual sEH/FAAH inhibitors, using an optimized microwave-assisted Suzuki-Miyaura coupling reaction and tested their potency in human FAAH and human, rat, and mouse sEH inhibition assays. The structure-activity relationship study showed that quinolinyl moiety is well tolerated in the active sites of both enzymes, yielding several very potent dual sEH/FAAH inhibitors with the IC50 values in the low nanomolar range. The most potent dual inhibitor 4d was further evaluated in stability assay in human and rat plasma where it performed better than the standard Warfarin while in vivo study revealed that 1 mg/kg 4d can inhibit acute inflammatory pain in male rats to a similar degree as the traditional nonsteroidal anti-inflammatory drug ketoprofen (30 mg/kg) after intraperitoneal injection. ADMET prediction studies for this dual inhibitor show favorable pharmacokinetic properties which will guide the future in vivo evaluations.

19.
Food Chem ; 455: 139684, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833869

RESUMO

To break through the bottleneck in preparation of nanobody (Nb) for chemical contaminants induced by the difficulties in the synthesis of immunogen, complexity and unexpectable efficiency of immunization, a novel strategy to generate Nbs based on the designed synthetic Nb libraries with final size up to 109 cfu/mL was adopted and succeeded in selection of anti-coumaphos Nb A4. Furthermore, an affinity-matured mutant Nb 3G was obtained from the secondary library. Finally, an ic-ELISA was established with the limit of detection for coumaphos low to 1.90 ng/mL, 6.4-fold improved than the parent Nb A4, and the detection range from 3.06 to 15.77 ng/mL. Meanwhile, the recovery rate of vegetable samples was from 89.9% to 98.5%. Finally, the accuracy was testified by the standard UPLC-MS/MS method with R2 up to 0.99. Overall, fully synthetic Nb libraries constructed in this work provided an alternative possibility to generate the specific Nbs for chemical contaminants.


Assuntos
Cumafos , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/genética , Cumafos/química , Cumafos/imunologia , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise , Biblioteca de Peptídeos
20.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709728

RESUMO

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Assuntos
Colorimetria , Contaminação de Alimentos , Fungicidas Industriais , Resíduos de Praguicidas , Fungicidas Industriais/análise , Contaminação de Alimentos/análise , Colorimetria/métodos , Resíduos de Praguicidas/análise , Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Fluorescência , Triticum/química , Nanopartículas Metálicas/química , Ouro/química , Limite de Detecção , Farinha/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...