Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.852
Filtrar
1.
Int J Pharm ; 665: 124667, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241931

RESUMO

Natural polysaccharide-based active-ingredient carriers have been a source of great concern for a long time. In order to explore potential antibiotics and probiotics carriers, a novel injectable chondroitin sulfate/salecan (CS) hydrogel was constructed by forming dynamic hydrazone bonds. Scanning electron microscope (SEM), proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), bacteriostatic test, and rheological experiments were used to investigate the chemical structure, inherent morphology, and enzymatic corruption of the hydrogel in vitro. The resulting hydrogels exhibited ideal probiotics loading capacity, drug release behavior, excellent antimicrobial activity and variable properties. Crucially, owing to its exceptional biocompatibility and reversible crosslinking network, this hydrogel can function as a three-dimensional extracellular matrix for cells, enabling cells to maintain high vitality and proliferation, and promote wound healing. The aforementioned findings indicated that this novel hydrogel can be a promising candidate as an active-ingredient carrier and scaffold material for tissue engineering.

2.
Biochem Biophys Res Commun ; 734: 150639, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241621

RESUMO

The target of rapamycin (TOR) protein, renowned for its highly conserved nature across species, plays a pivotal role in modulating signaling pathways via its multiprotein complexes, TORC1 and TORC2. The relationship between TOR and its inhibitor, rapamycin, especially in the context of lifespan extension, has earned significant attention. Unlike mammals, which have a single TOR gene, the budding yeast Saccharomyces cerevisiae features two TOR paralogs: TOR1 and TOR2. Non-essential TOR1 gene has been the focus of extensive research, whereas the essential TOR2 gene has received relatively little attention in lifespan studies. In our research, we engineered a point mutation (Ser-1975-Ile) within the FKBP12-rapamycin-binding (FRB) domain of Tor2p to block rapamycin binding. Remarkably, this mutation negated the lifespan-extending benefits of rapamycin, irrespective of the TOR1 gene status. Our findings indicate that the TOR2 gene likely serves as the primary mammalian ortholog, playing a crucial role in mediating the effects of rapamycin on lifespan extension. This discovery opens a new avenue for the development of innovative anti-aging agents targeting the TOR. complex.

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 899-906, 2024.
Artigo em Chinês | MEDLINE | ID: mdl-39267503

RESUMO

OBJECTIVES: To investigate how maternal MTR gene polymorphisms and their interactions with periconceptional folic acid supplementation are associated with the incidence of ventricular septal defects (VSD) in offspring. METHODS: A case-control study was conducted, recruiting 426 mothers of infants with VSD under one year old and 740 mothers of age-matched healthy infants. A questionnaire survey collected data on maternal exposures, and blood samples were analyzed for genetic polymorphisms. Multivariable logistic regression analysis and inverse probability of treatment weighting were used to analyze the associations between genetic loci and VSD. Crossover analysis and logistic regression were utilized to examine the additive and multiplicative interactions between the loci and folic acid intake. RESULTS: The CT and TT genotypes of the maternal MTR gene at rs6668344 increased the susceptibility of offspring to VSD (P<0.05). The GC and CC genotypes at rs3768139, AG and GG at rs1050993, AT and TT at rs4659743, GG at rs3768142, and GT and TT at rs3820571 were associated with a decreased risk of VSD (P<0.05). The variations at rs6668344 demonstrated an antagonistic multiplicative interaction with folic acid supplementation in relation to VSD (P<0.05). CONCLUSIONS: Maternal MTR gene polymorphisms significantly correlate with the incidence of VSD in offspring. Mothers with variations at rs6668344 can decrease the susceptibility to VSD in their offspring by supplementing with folic acid during the periconceptional period, suggesting the importance of periconceptional folic acid supplementation in genetically at-risk populations to prevent VSD in offspring.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Suplementos Nutricionais , Ácido Fólico , Comunicação Interventricular , Humanos , Ácido Fólico/administração & dosagem , Feminino , Comunicação Interventricular/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Estudos de Casos e Controles , Lactente , Adulto , Gravidez , Polimorfismo Genético , Masculino , Polimorfismo de Nucleotídeo Único
4.
J Environ Manage ; 370: 122567, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303598

RESUMO

Integrated fixed-film activated sludge (IFAS) system, an improvement of the activated sludge process, combines the advantages of both attached sludge (AS) and suspended sludge (SS). This study aimed to fully decipher the roles of AS and SS in simultaneous N and P removal in an IFAS system through metagenomic analysis. It was found that AS contributed about 84.04%, 97%, and 95.12% to exogenous NO3--N reduction, endogenous NO3--N reduction, and endogenous NO2--N reduction, respectively. Compared with AS, SS exhibited a greater contribution to anaerobic P release (69.06%) and aerobic P uptake (73.48%). Nitrate and nitrite reductase enzymes showed higher activities in AS, while the activities of exopolyphosphatase and alkaline phosphatase D were more active in SS. P content further indicated that in AS, only a small amount of P was stored in EPS, with most presented intracellularly. In SS, the amount of P stored in EPS was found to be higher. Metagenomic analysis revealed genes related to the synthesis and degradation of endogenous carbon were higher in AS, whereas the TCA cycle exhibited higher activity in SS. P removal-related genes (such as ppk2, ppx, and adk) was significantly higher in SS than in AS. The alteration of genes associated with nitrogen metabolism suggested that the microbes in AS had a higher capacity for nitrification and denitrification. In summary, the discrepancy in the roles of AS and SS in N and P removal in IFAS can be attributed to variations in enzyme activity, P storage in EPS, microbial community composition, and functional gene abundance.

5.
Vet Microbiol ; 298: 110252, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39299012

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) has emerged as a significant pathogen in the global pork industry since the late 1980s, causing substantial economic losses due to its high contagiousness and genetic variability. China, with its complex epidemiological landscape, has witnessed the emergence of four distinct lineages of PRRSV-2 (Lineages 1, 3, 5, and 8) and occasional occurrences of PRRSV-1. This review summarizes the historical context and epidemiological trends that have led to the diversification of PRRSV in China, discusses the evolutionary dynamics behind the establishment of diverse genetic variants, as well as the impact of recombination and modified live vaccines (MLVs) on the virus's rapid evolution. The implications for disease management, including strategies to reduce the complexity of PRRSV epidemics and improve prevention and control measures, are also suggested. Understanding the evolutionary pattern and factors contributing to PRRSV diversity is crucial for enhancing our knowledge, control capabilities, and prevention strategies, which could be integrated into swine health management practices.

6.
Vet Microbiol ; 298: 110243, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39299011

RESUMO

Classical swine fever virus (CSFV) and porcine productive and respiratory syndrome virus (PRRSV) both are significant infectious pathogens in pigs and pose great threats to the healthy development of the pig industry. PRRSV infection often reduces the antibody level of the CSFV attenuated vaccine and even leads to immune failure. In order to elucidate the potential mechanism of CSFV proliferation inhibition by PRRSV and screen out drugs that enhance the vaccine immune effect, we conducted experiments in the PAM39 cell line that can simultaneously support both PRRSV and CSFV infection. The results showed that PRRSV infection could induce gasdermin D (GSDMD) cleavage, promote cell pyroptosis, increase IL-1ß secretion, and then inhibit CSFV replication. However, Astragalus polysaccharide treatment could reverse this phenomenon. The results elucidate the molecular mechanism of CSFV vaccine immune failure caused by PRRSV co-infection from the perspective of pyroptosis and provide a scientific basis for the prevention and control of clinical co-infection diseases.

7.
Front Pharmacol ; 15: 1463114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281285

RESUMO

Organoids, characterized by their high physiological attributes, effectively preserve the genetic characteristics, physiological structure, and function of the simulated organs. Since the inception of small intestine organoids, other organoids for organs including the liver, lungs, stomach, and pancreas have subsequently been developed. However, a comprehensive summary and discussion of research findings on gastrointestinal tract (GIT) organoids as disease models and drug screening platforms is currently lacking. Herein, in this review, we address diseases related to GIT organoid simulation and highlight the notable advancements that have been made in drug screening and pharmacokinetics, as well as in disease research and treatment using GIT organoids. Organoids of GIT diseases, including inflammatory bowel disease, irritable bowel syndrome, necrotizing enterocolitis, and Helicobacter pylori infection, have been successfully constructed. These models have facilitated the study of the mechanisms and effects of various drugs, such as metformin, Schisandrin C, and prednisolone, in these diseases. Furthermore, GIT organoids have been used to investigate viruses that elicit GIT reactions, including Norovirus, SARS-CoV-2, and rotavirus. Previous studies by using GIT organoids have shown that dasabuvir, gemcitabine, and imatinib possess the capability to inhibit viral replication. Notably, GIT organoids can mimic GIT responses to therapeutic drugs at the onset of disease. The GIT toxicities of compounds like gefitinib, doxorubicin, and sunset yellow have also been evaluated. Additionally, these organoids are instrumental for the study of immune regulation, post-radiation intestinal epithelial repair, treatment for cystic fibrosis and diabetes, the development of novel drug delivery systems, and research into the GIT microbiome. The recent use of conditioned media as a culture method for replacing recombinant hepatocyte growth factor has significantly reduced the cost associated with human GIT organoid culture. This advancement paves the way for large-scale culture and compound screening of GIT organoids. Despite the ongoing challenges in GIT organoid development (e.g., their inability to exist in pairs, limited cell types, and singular drug exposure mode), these organoids hold considerable potential for drug screening. The use of GIT organoids in this context holds great promises to enhance the precision of medical treatments for patients living with GIT diseases.

8.
Int J Antimicrob Agents ; : 107331, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251094

RESUMO

BACKGROUND: Vonoprazan, the new acid suppressive drug, provides more choices for eradicating H. pylori. Therefore, whether vonoprazan and high dose amoxicillin dual therapy is more effective and safer requires a systematic analysis. MATERIALS AND METHODS: A comprehensive search of the literature from PubMed, Embase, Cochrane Library, Web of Science database, up to May 16, 2024. Trails evaluating H. pylori eradicating rates, adverse events, and compliance of VHA dual therapy compared with other therapies were included. RevMan 5.4 was used for statistical analysis. RESULTS: 11 RCTs and 2 retrospective clinical studies with 4570 samples were included. The VHA dual therapy has superior H. pylori eradicating rates (ITT: 86.0% vs 80.7%, OR=1.36, 95% CI 1.07-1.73, P=0.01; PP: 90.6% vs 85.7%, OR=1.42, 95% CI 1.07-1.88, P=0.02), fewer adverse events(15.4% vs 27.7%, OR=0.49, 95%CI 0.35-0.68, P<0.0001), and similar compliance (94.6% vs 93.2%, OR=1.27, 95% CI 0.98-1.64, P=0.07) in comparison to other guideline therapies. According to subgroup analysis with PP data, VHA is more effective than P-BQT (93.5% vs 89.3%, OR=1.76, 95% CI 1.03-3.00, P=0.04). In addition, the eradicating rates of 10-day and 14-day VHA were 92% (95% CI 0.91-0.94) and 93% (95% CI 0.90-0.97) respectively, with the 7-day VHA 65% (95% CI 0.55-0.75). CONCLUSION: VHA dual therapy, for 10 or 14 days showed superior efficacy and safety comparing with therapies recommended by the guidelines, should be prioritized for adoption.

9.
J Am Chem Soc ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283164

RESUMO

We report a mild method for the copper-catalyzed amination of aryl chlorides. Key to the success of the method was the use of highly sterically encumbered N1,N2-diaryl diamine ligands which resist catalyst deactivation, allowing reactions to proceed at significantly lower temperatures and with a broader scope than current protocols. A sequence of highly chemoselective C-N and C-O cross-coupling reactions were demonstrated, and mechanistic studies indicate that oxidative addition of the Cu catalyst to the aryl chlorides is rate-limiting. We anticipate that the design principles disclosed herein will help motivate further advances in Cu-catalyzed transformations of aryl chlorides.

10.
Mol Neurobiol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39278884

RESUMO

Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.

12.
Nanoscale ; 16(36): 17165-17175, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39196333

RESUMO

Optical multilayer thin films have a wide range of applications due to their ability to manipulate transmissive or reflective wavelengths by adjusting the thickness of composed layers, enabling diverse uses. Although their light weight, flexible nature and ease of fabrication position them as promising components for future devices, determining their optimal layer thickness for the desired functionality demands extensive simulations, leading to inefficient utilization of computational resources and time. To overcome these challenges, inverse design methods, leveraging machine learning and deep learning, are being explored. However, these methods necessitate learning processes, despite the presence of well-established formulas that elucidate these phenomena. Furthermore, deriving accurate answers for conditions not included in the learning process proves to be challenging. This paper introduces an innovative inverse design approach that utilizes the backpropagation of a networked transfer matrix, effectively explaining the characteristics of optical multilayer thin films. By exploiting the chain rule of the network, this method calculates gradients to discern how each layer thickness influences the outcomes. Consequently, the optimal thickness is determined without the need for an additional learning process. Mathematical elucidation of the operational principle of this approach is precisely described. Optimization of computing resource utilization through network configuration reduces the calculation time compared to conventional methods. The efficacy of this method is demonstrated through its application in the inverse design of transmissive and reflective films, verifying its potential for enhancing efficiency and accuracy in optical multilayer thin-film design and manufacturing processes.

13.
Microb Pathog ; 195: 106885, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182857

RESUMO

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) are three clinically common coronaviruses causing diarrhea in pigs, with indistinguishable clinical signs and pathological changes. Rapid, portable and reliable differential diagnosis of these three pathogens is crucial for the prompt implementation of appropriate control measures. In this study, we developed a triplex nucleic acid assay that combines reverse transcription recombinase-aided amplification (RT-RAA) with lateral flow assay (LFA) by targeting the most conserved genomic region in the ORF1b genes of PEDV, PDCoV and TGEV. The entire detection process of the triplex RT-RAA-LFA assay included 10-min nucleic acid amplification at 42 °C and 5-min visual LFA readout at room temperature. The assay could specifically differentiate PEDV, PDCoV and TGEV without cross-reaction with any other major swine pathogens. Sensitivity analysis showed that the triplex RT-RAA-LFA assay was able to detect the viral RNA extracted from the spiked fecal samples with the minimum of 1 × 100 TCID50 PEDV, 1 × 104 TCID50 PDCoV, and 1 × 102 TCID50 TGEV per reaction, respectively. Further analysis showed that the 95 % detection limit (LOD) of triplex RT-RAA-LFA for PEDV, PDCoV, and TGEV were 22, 478, and 205 copies of recombinant plasmids per reaction, respectively. The diagnostic performance of triplex RT-RAA-LFA was compared with that of PEDV, PDCoV and TGEV respective commercial real-time RT-PCR kits by testing 114 clinical rectal swab samples in parallel. The total diagnostic coincidence rates of triplex RT-RAA-LFA with real-time RT-PCR kits of PEDV, PDCoV and TGEV were 100 %, 99.1 % and 99.1 %, respectively, and their Kappa values were 1.00, 0.958 and 0.936, respectively. Collectively, the RT-RAA-LFA assay is a powerful tool for the rapid, portable, visual, and synchronous differential diagnosis of PEDV, PDCoV, and TGEV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Fezes , Técnicas de Amplificação de Ácido Nucleico , Vírus da Diarreia Epidêmica Suína , RNA Viral , Sensibilidade e Especificidade , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Gastroenterite Transmissível/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Fezes/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Diagnóstico Diferencial , Deltacoronavirus/isolamento & purificação , Deltacoronavirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Técnicas de Diagnóstico Molecular/métodos , Diarreia/virologia , Diarreia/veterinária , Diarreia/diagnóstico
14.
J Virol ; 98(9): e0113224, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194294

RESUMO

The 5' untranslated region (5'UTR) of many positive-stranded RNA viruses contain functional regulatory sequences. Here, we show that the porcine reproductive and respiratory syndrome virus (PRRSV), a member of arteriviruses, harbors small upstream open reading frames (uORFs) in its 5'UTR. Bioinformatics analysis shows that this feature is relatively well conserved among PRRSV strains and Arteriviridae. We also identified a uORF, namely uORF2, in the PRRSV strain JXwn06, that possesses translational activity and exerts a suppressive effect on the expression of the primary ORF evidenced by in vitro reporter assays. We tested its importance via reverse genetics by introducing a point mutation into the PRRSV infectious cDNA clone to inactivate the start codon of uORF2. The recovered mutant virus Mut2 surprisingly replicated to the same level as the wild-type virus (WT), but induced a higher level of inflammatory cytokines (e.g., TNF-α, IL-1ß, and IL-6) both in vitro and in animal experiments, correlating well with more severe lung injury and higher death rate. In line with this, over-expression of uORF2 in transfected cells significantly inhibited poly(I:C)-induced expression of inflammatory cytokines. Together, our data support the idea that uORF2 encodes a novel, functional regulator of PRRSV virulence despite of its short size. IMPORTANCE: PRRSV has remained a major challenge to the world swine industry, but we still do not know much about its biology and pathogenesis. Here, we provide evidence to show that the 5'UTR of PRRSV strain JXwn06 harbors a functional uORF that has the coding capacity and regulates induction of inflammation as demonstrated by in vitro assays and animal experiment. The findings reveal a novel viral factor that regulates cellular inflammation and provide insight into the understanding of PRRSV pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Fases de Leitura Aberta , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Regiões 5' não Traduzidas/genética , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Replicação Viral , Inflamação/virologia , Linhagem Celular , Citocinas/metabolismo , Citocinas/genética
15.
Ann Hepatol ; : 101536, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151890

RESUMO

INTRODUCTION AND OBJECTIVES: Radioresistance is a common problem in the treatment of many cancers, including hepatocellular carcinoma (HCC). Previous studies have shown that circROBO1 is highly expressed in HCC tissues and acts as a cancer promoter to accelerate the malignant progression of HCC. However, the role and mechanism of circROBO1 in HCC radioresistance remain unclear. MATERIALS AND METHODS: CircROBO1, microRNA (miR)-136-5p and RAD21 expression levels were analyzed by quantitative real-time PCR. Cell function and radioresistance were evaluated by colony formation assay, cell counting kit 8 assay, EdU assay and flow cytometry. Protein expression was determined using western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. In vivo experiments were performed by constructing mice xenograft models. RESULTS: CircROBO1 was highly expressed in HCC, and its knockdown inhibited HCC cell proliferation and promoted apoptosis to enhance cell radiosensitivity. On the mechanism, circROBO1 could serve as miR-136-5p sponge to positively regulate RAD21. MiR-136-5p inhibitor or RAD21 overexpression reversed the regulation of circROBO1 knockdown on the radiosensitivity of HCC cells. Also, circROBO1 interference improved the radiosensitivity of HCC tumors in vivo. CONCLUSIONS: CircROBO1 might be a promising target for treating HCC radioresistance.

16.
Sci China Life Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39172347

RESUMO

Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.

17.
BMC Res Notes ; 17(1): 230, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169443

RESUMO

INTRODUCTION: Gulf War illness (GWI) is an environmentally-triggered chronic multisymptom illness typified by protean symptoms, in which mitochondrial impairment is evident. It has been likened to accelerated aging. Nuclear genetics of detoxification have been linked to GWI. OBJECTIVE: To see whether mitochondrial (mt) haplogroup U - a heritable profile of mitochondrial DNA that has been tied to aging-related conditions - significantly predicts greater GWI severity; and to assess whether GWI severity is influenced by mitochondrial as well as nuclear genetics. 54 consenting Gulf War veterans gave information on GWI severity, of whom 52 had nuclear DNA assessment; and 45 had both nuclear and mitochondrial DNA assessments. Regression with robust standard errors assessed prediction of GWI severity as a function of nuclear genetics (butyrylcholinesterase variants), mitochondrial genetics (haplogroup U, previously tied to aging-related conditions); or both. RESULTS: BChE "adverse" variants significantly predicted GWI severity (ß(SE) = 23.4(11.4), p = 0.046), as did mt haplogroup U (ß(SE) = 36.4(13.6), p = 0.010). In a model including both, BChE was no longer significant, but mt haplogroup U retained significance (ß(SE) = 36.7(13.0), p = 0.007). This is the first study to show that mitochondrial genetics are tied to GWI severity in Gulf-deployed veterans. Other data affirm a tie to nuclear genetics, making GWI indeed a "tale of two genomes."


Assuntos
DNA Mitocondrial , Síndrome do Golfo Pérsico , Veteranos , Humanos , Síndrome do Golfo Pérsico/genética , Pessoa de Meia-Idade , Masculino , DNA Mitocondrial/genética , Feminino , Haplótipos , Butirilcolinesterase/genética , Adulto , Idoso , Índice de Gravidade de Doença
18.
Artigo em Inglês | MEDLINE | ID: mdl-39115898

RESUMO

The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure (BP). We administered hydroxylamine hydrochloride (HA), a cystathionine-ß-synthase (CBS) inhibitor, into the PVN to suppress endogenous hydrogen sulfide (H2S) and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the NS+PVN vehicle group, the NS+PVN HA group, the HS+PVN vehicle group, and the HS+PVN HA group, with 10 rats in each group. The rats in the NS (normal salt) groups were fed a normal-salt diet containing 0.3% NaCl, while the HS (high salt) groups were fed a high-salt diet containing 8% NaCl. The mean arterial pressure (MAP) was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini-pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H2S in the PVN and plasma norepinephrine (NE) using ELISA. Additionally, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time PCR. In the current study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of high salt-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.

19.
Chemistry ; : e202402667, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109456

RESUMO

A novel room-temperature liquid crystal of tetraphenylethylene derivative (TPE-DHAB) was synthesized using an ionic self-assembly strategy. The TPE-DHAB complex exhibits typical aggregation-induced emission properties and a unique helical supramolecular structure. Moreover, the generation and handedness inversion of circularly polarized luminescence (CPL) can be achieved through further chiral solvation, providing a facile approach to fabricate room-temperature liquid crystalline materials with controllable supramolecular structures and tunable CPL properties through a synergistic strategy of ionic self-assembly and chiral solvation process.

20.
Am J Emerg Med ; 85: 35-43, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39213808

RESUMO

Artificial intelligence (AI) is becoming increasingly integral in clinical practice, such as during imaging tasks associated with the diagnosis and evaluation of blunt chest trauma (BCT). Due to significant advances in imaging-based deep learning, recent studies have demonstrated the efficacy of AI in the diagnosis of BCT, with a focus on rib fractures, pulmonary contusion, hemopneumothorax and others, demonstrating significant clinical progress. However, the complicated nature of BCT presents challenges in providing a comprehensive diagnosis and prognostic evaluation, and current deep learning research concentrates on specific clinical contexts, limiting its utility in addressing BCT intricacies. Here, we provide a review of the available evidence surrounding the potential utility of AI in BCT, and additionally identify the challenges impeding its development. This review offers insights on how to optimize the role of AI in the diagnostic evaluation of BCT, which can ultimately enhance patient care and outcomes in this critical clinical domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...