Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38692836

RESUMO

The prefrontal cortex is considered as the site of multifaceted higher-order cognitive abilities. These abilities emerge late in life long after full sensorimotor maturation, in line with the protracted development of prefrontal circuits that has been identified on molecular, structural, and functional levels. Only recently, as a result of the impressive methodological progress of the last several decades, the mechanisms and clinical implications of prefrontal development have begun to be elucidated, yet major knowledge gaps still persist. Here, we provide an overview on how prefrontal circuits develop to enable multifaceted cognitive processing at adulthood. First, we review recent insights into the mechanisms of prefrontal circuit assembly, with a focus on the contribution of early electrical activity. Second, we highlight the major reorganization of prefrontal circuits during adolescence. Finally, we link the prefrontal plasticity during specific developmental time windows to mental health disorders and discuss potential approaches for therapeutic interventions.

2.
Cell Rep ; 43(6): 114267, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795344

RESUMO

In the adult brain, structural and functional parameters, such as synaptic sizes and neuronal firing rates, follow right-skewed and heavy-tailed distributions. While this organization is thought to have significant implications, its development is still largely unknown. Here, we address this knowledge gap by investigating a large-scale dataset recorded from the prefrontal cortex and the olfactory bulb of mice aged 4-60 postnatal days. We show that firing rates and spike train interactions have a largely stable distribution shape throughout the first 60 postnatal days and that the prefrontal cortex displays a functional small-world architecture. Moreover, early brain activity exhibits an oligarchical organization, where high-firing neurons have hub-like properties. In a neural network model, we show that analogously right-skewed and heavy-tailed synaptic parameters are instrumental to consistently recapitulate the experimental data. Thus, functional and structural parameters in the developing brain are already extremely distributed, suggesting that this organization is preconfigured and not experience dependent.


Assuntos
Encéfalo , Animais , Camundongos , Encéfalo/crescimento & desenvolvimento , Bulbo Olfatório/crescimento & desenvolvimento , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Sinapses/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/citologia , Potenciais de Ação/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Modelos Neurológicos
3.
Science ; 383(6682): eadk8511, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301001

RESUMO

The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.


Assuntos
Pressão Sanguínea , Encéfalo , Pressão Intracraniana , Canais Iônicos , Mecanotransdução Celular , Neurônios , Pressorreceptores , Animais , Ratos , Canais Iônicos/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Transmissão Sináptica , Pressorreceptores/fisiologia , Ratos Wistar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Frequência Cardíaca , Pulso Arterial , Encéfalo/fisiologia , Pressão Intracraniana/fisiologia , Feminino
4.
Nat Commun ; 15(1): 738, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272901

RESUMO

Sharp wave-ripples (SPW-Rs) are a hippocampal network phenomenon critical for memory consolidation and planning. SPW-Rs have been extensively studied in the adult brain, yet their developmental trajectory is poorly understood. While SPWs have been recorded in rodents shortly after birth, the time point and mechanisms of ripple emergence are still unclear. Here, we combine in vivo electrophysiology with optogenetics and chemogenetics in 4 to 12-day-old mice to address this knowledge gap. We show that ripples are robustly detected and induced by light stimulation of channelrhodopsin-2-transfected CA1 pyramidal neurons only from postnatal day 10 onwards. Leveraging a spiking neural network model, we mechanistically link the maturation of inhibition and ripple emergence. We corroborate these findings by reducing ripple rate upon chemogenetic silencing of CA1 interneurons. Finally, we show that early SPW-Rs elicit a more robust prefrontal cortex response than SPWs lacking ripples. Thus, development of inhibition promotes ripples emergence.


Assuntos
Hipocampo , Células Piramidais , Camundongos , Animais , Hipocampo/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia
5.
Neuron ; 112(3): 421-440.e7, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979584

RESUMO

Most cognitive functions involving the prefrontal cortex emerge during late development. Increasing evidence links this delayed maturation to the protracted timeline of prefrontal development, which likely does not reach full maturity before the end of adolescence. However, the underlying mechanisms that drive the emergence and fine-tuning of cognitive abilities during adolescence, caused by circuit wiring, are still unknown. Here, we continuously monitored prefrontal activity throughout the postnatal development of mice and showed that an initial activity increase was interrupted by an extensive microglia-mediated breakdown of activity, followed by the rewiring of circuit elements to achieve adult-like patterns and synchrony. Interfering with these processes during adolescence, but not adulthood, led to a long-lasting microglia-induced disruption of prefrontal activity and neuronal morphology and decreased cognitive abilities. These results identified a nonlinear reorganization of prefrontal circuits during adolescence and revealed its importance for adult network function and cognitive processing.


Assuntos
Cognição , Córtex Pré-Frontal , Adolescente , Humanos , Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia
6.
Curr Biol ; 33(20): 4353-4366.e5, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37729915

RESUMO

The interplay between olfaction and higher cognitive processing has been documented in the adult brain; however, its development is poorly understood. In mice, shortly after birth, endogenous and stimulus-evoked activity in the olfactory bulb (OB) boosts the oscillatory entrainment of downstream lateral entorhinal cortex (LEC) and hippocampus (HP). However, it is unclear whether early OB activity has a long-lasting impact on entorhinal-hippocampal function and cognitive processing. Here, we chemogenetically silenced the synaptic outputs of mitral/tufted cells, the main projection neurons in the OB, during postnatal days 8-10. The transient manipulation leads to a long-lasting reduction of oscillatory coupling and weaker responsiveness to stimuli within developing entorhinal-hippocampal circuits accompanied by dendritic sparsification of LEC pyramidal neurons. Moreover, the transient silencing reduces the performance in behavioral tests involving entorhinal-hippocampal circuits later in life. Thus, neonatal OB activity is critical for the functional LEC-HP development and maturation of cognitive abilities.


Assuntos
Hipocampo , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Hipocampo/fisiologia , Córtex Entorrinal/fisiologia , Olfato/fisiologia , Cognição
7.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398375

RESUMO

Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information flowing between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional anaytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously hidden feature-specific information flow.

8.
J Physiol ; 601(16): 3605-3630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434507

RESUMO

Cognitive processing relies on the functional refinement of the limbic circuitry during the first two weeks of life. During this developmental period, when the auditory, somatosensory and visual systems are still largely immature, the sense of olfaction acts as 'door to the world', providing an important source of environmental inputs. However, it is unknown whether early olfactory processing shapes the activity in the limbic circuitry during neonatal development. Here, we address this question by combining simultaneous in vivo recordings from the olfactory bulb (OB), lateral entorhinal cortex (LEC), hippocampus (HP) and prefrontal cortex (PFC) with olfactory stimulation as well as opto- and chemogenetic manipulations of mitral/tufted cells in the OB of non-anaesthetized neonatal mice of both sexes. We show that the neonatal OB synchronizes the limbic circuity in the beta frequency range. Moreover, it drives neuronal and network activity in LEC, as well as subsequently, HP and PFC via long-range projections from mitral cells to HP-projecting LEC neurons. Thus, OB activity shapes the communication within limbic circuits during neonatal development. KEY POINTS: During early postnatal development, oscillatory activity in the olfactory bulb synchronizes the limbic circuit. Olfactory stimulation boosts firing and beta synchronization along the olfactory bulb-lateral entorhinal cortex-hippocampal-prefrontal pathway. Mitral cells drive neuronal and network activity in the lateral entorhinal cortex (LEC), as well as subsequently, the hippocampus (HP) and the prefrontal cortex (PFC) via long-range projections from mitral cells to HP-projecting LEC neurons. Inhibition of vesicle release on LEC targeting mitral cell axons reveals direct involvement of LEC in the olfactory bulb-driven oscillatory entrainment of the limbic circuitry.


Assuntos
Bulbo Olfatório , Olfato , Camundongos , Animais , Masculino , Feminino , Olfato/fisiologia , Bulbo Olfatório/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo , Neurônios/fisiologia
9.
PLoS Biol ; 21(7): e3002221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498809

RESUMO

Investigation of brain function has been fueled by an accelerating development of novel technologies and tools. This Perspective looks at the unprecedented neurotechnological progress of the past 2 decades and discusses future strategies to elucidate brain function.


Assuntos
Neurociências , Encéfalo , Previsões , Tecnologia
10.
Neuron ; 111(7): 1020-1036, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023708

RESUMO

The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.


Assuntos
Neurônios , Córtex Pré-Frontal , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia , Adaptação Psicológica , Plasticidade Neuronal/fisiologia , Cognição
11.
J Physiol ; 601(4): 847-857, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36647326

RESUMO

Cognitive deficits in mental disorders result from dysfunctional activity in large-scale brain networks centred around the hippocampus and the prefrontal cortex. Dysfunctional activity emerges early during development and precedes the cognitive disabilities. The prefrontal-hippocampal network is driven by a prominent input from the lateral entorhinal cortex. We have previously shown that during early development, the entorhinal drive of the prefrontal-hippocampal network is impaired in a mouse model of mental disorders, yet the cellular substrate of this impairment is still poorly understood. Here, we address this question by a detailed characterization of projection neurons across the layers of the lateral entorhinal cortex in immune-challenged Disc1+/- mice at the beginning of the second postnatal week. We found that the activity and morphology of neurons in layers 2b and 3, which project to the hippocampus, are impaired. Neurons in layer 2b show increased spike-frequency adaptation, whereas neurons in layer 3 have reduced dendritic complexity but increased spike density. These findings identify the developmental alterations of entorhinal-hippocampal communication that underlie network dysfunction in immune-challenged Disc1+/- mice. KEY POINTS: Neonatal immune-challenged Disc1+/- mice show layer-specific changes in the lateral entorhinal cortex. Entorhinal layer 2b pyramidal neurons have increased spike-frequency adaptation. Reduced dendritic complexity but increased spine density characterize layer 3 pyramidal neurons.


Assuntos
Córtex Entorrinal , Hipocampo , Camundongos , Animais , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais , Córtex Pré-Frontal , Proteínas do Tecido Nervoso
12.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234832

RESUMO

Neuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human brain organoids and ex vivo neonatal brain slices from the murine somatosensory cortex. We observed a balance between temporally rigid and flexible firing patterns that are emergent phenomena in human brain organoids and early postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by an innate preconfigured architecture established during neurogenesis. These findings highlight the potential for brain organoids to further explore how exogenous inputs can be used to refine neuronal circuits and enable new studies into the genetic mechanisms that govern assembly of functional circuitry during early human brain development.

13.
Mol Psychiatry ; 27(11): 4707-4721, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123424

RESUMO

The precise development of the neocortex is a prerequisite for higher cognitive and associative functions. Despite numerous advances that have been made in understanding neuronal differentiation and cortex development, our knowledge regarding the impact of specific genes associated with neurodevelopmental disorders on these processes is still limited. Here, we show that Taok2, which is encoded in humans within the autism spectrum disorder (ASD) susceptibility locus 16p11.2, is essential for neuronal migration. Overexpression of de novo mutations or rare variants from ASD patients disrupts neuronal migration in an isoform-specific manner. The mutated TAOK2α variants but not the TAOK2ß variants impaired neuronal migration. Moreover, the TAOK2α isoform colocalizes with microtubules. Consequently, neurons lacking Taok2 have unstable microtubules with reduced levels of acetylated tubulin and phosphorylated JNK1. Mice lacking Taok2 develop gross cortical and cortex layering abnormalities. Moreover, acute Taok2 downregulation or Taok2 knockout delayed the migration of upper-layer cortical neurons in mice, and the expression of a constitutively active form of JNK1 rescued these neuronal migration defects. Finally, we report that the brains of the Taok2 KO and 16p11.2 del Het mouse models show striking anatomical similarities and that the heterozygous 16p11.2 microdeletion mouse model displayed reduced levels of phosphorylated JNK1 and neuronal migration deficits, which were ameliorated upon the introduction of TAOK2α in cortical neurons and in the developing cortex of those mice. These results delineate the critical role of TAOK2 in cortical development and its contribution to neurodevelopmental disorders, including ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neocórtex , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Microtúbulos/genética , Microtúbulos/metabolismo , Neocórtex/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
14.
Nat Commun ; 13(1): 4571, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931682

RESUMO

Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.


Assuntos
Quimerismo , Troca Materno-Fetal , Animais , Feminino , Feto , Mamíferos , Camundongos , Parto , Placenta , Gravidez
15.
Sci Data ; 9(1): 113, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351935

RESUMO

The acute effects of anesthesia and their underlying mechanisms are still not fully understood. Thus, comprehensive analysis and efficient generalization require their description in various brain regions. Here we describe a large-scale, annotated collection of 2-photon calcium imaging data and multi-electrode, extracellular electrophysiological recordings in CA1 of the murine hippocampus under three distinct anesthetics (Isoflurane, Ketamine/Xylazine and Medetomidine/Midazolam/Fentanyl), during natural sleep, and wakefulness. We cover several aspects of data quality standardization and provide a set of tools for autonomous validation, along with analysis workflows for reuse and data exploration. The datasets described here capture various aspects of neural activity in hundreds of pyramidal cells at single cell resolution. In addition to relevance for basic biological research, the dataset may find utility in computational neuroscience as a benchmark for models of anesthesia and sleep.


Assuntos
Anestesia , Cálcio , Hipocampo , Sono , Animais , Hipocampo/fisiologia , Camundongos , Xilazina
16.
J Neurosci ; 42(4): 601-618, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34844990

RESUMO

Precise information flow from the hippocampus (HP) to prefrontal cortex (PFC) emerges during early development and accounts for cognitive processing throughout life. On flip side, this flow is selectively impaired in mental illness. In mouse models of psychiatric risk mediated by gene-environment interaction (GE), the prefrontal-hippocampal coupling is disrupted already shortly after birth. While this impairment relates to local miswiring in PFC and HP, it might be also because of abnormal connectivity between the two brain areas. Here, we test this hypothesis by combining in vivo electrophysiology and optogenetics with in-depth tracing of projections and monitor the morphology and function of hippocampal afferents in the PFC of control and GE mice of either sex throughout development. We show that projections from the hippocampal CA1 area preferentially target layer 5/6 pyramidal neurons and interneurons, and to a lesser extent layer 2/3 neurons of prelimbic cortex (PL), a subdivision of PFC. In neonatal GE mice, sparser axonal projections from CA1 pyramidal neurons with decreased release probability reach the PL. Their ability to entrain layer 5/6 oscillatory activity and firing is decreased. These structural and functional deficits of hippocampal-prelimbic connectivity persist, yet are less prominent in prejuvenile GE mice. Thus, besides local dysfunction of HP and PL, weaker connectivity between the two brain areas is present in GE mice throughout development.SIGNIFICANCE STATEMENT Poor cognitive performance in mental disorders comes along with prefrontal-hippocampal dysfunction. Recent data from mice that model the psychiatric risk mediated by gene-environment (GE) interaction identified the origin of deficits during early development, when the local circuits in both areas are compromised. Here, we show that sparser and less efficient connectivity as well as cellular dysfunction are the substrate of the weaker excitatory drive from hippocampus (HP) to prefrontal cortex (PFC) as well as of poorer oscillatory coupling between the two brain areas in these mice. While the structural and functional connectivity deficits persist during the entire development, their magnitude decreases with age. The results add experimental evidence for the developmental miswiring hypothesis of psychiatric disorders.


Assuntos
Interação Gene-Ambiente , Hipocampo/crescimento & desenvolvimento , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/química , Masculino , Transtornos Mentais/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Córtex Pré-Frontal/química , Fatores de Risco
17.
Front Behav Neurosci ; 16: 1038981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600993

RESUMO

Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.

18.
Nat Commun ; 12(1): 6810, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815409

RESUMO

The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Córtex Entorrinal/fisiopatologia , Transtornos Mentais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Animais Recém-Nascidos , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Modelos Animais de Doenças , Feminino , Interação Gene-Ambiente , Humanos , Masculino , Transtornos Mentais/genética , Transtornos Mentais/imunologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Vias Neurais/fisiopatologia , Optogenética , Técnicas de Patch-Clamp , Gravidez
19.
PLoS Biol ; 19(4): e3001146, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793545

RESUMO

General anesthesia is characterized by reversible loss of consciousness accompanied by transient amnesia. Yet, long-term memory impairment is an undesirable side effect. How different types of general anesthetics (GAs) affect the hippocampus, a brain region central to memory formation and consolidation, is poorly understood. Using extracellular recordings, chronic 2-photon imaging, and behavioral analysis, we monitor the effects of isoflurane (Iso), medetomidine/midazolam/fentanyl (MMF), and ketamine/xylazine (Keta/Xyl) on network activity and structural spine dynamics in the hippocampal CA1 area of adult mice. GAs robustly reduced spiking activity, decorrelated cellular ensembles, albeit with distinct activity signatures, and altered spine dynamics. CA1 network activity under all 3 anesthetics was different to natural sleep. Iso anesthesia most closely resembled unperturbed activity during wakefulness and sleep, and network alterations recovered more readily than with Keta/Xyl and MMF. Correspondingly, memory consolidation was impaired after exposure to Keta/Xyl and MMF, but not Iso. Thus, different anesthetics distinctly alter hippocampal network dynamics, synaptic connectivity, and memory consolidation, with implications for GA strategy appraisal in animal research and clinical settings.


Assuntos
Anestésicos/efeitos adversos , Hipocampo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Coluna Vertebral/efeitos dos fármacos , Anestesia/efeitos adversos , Anestésicos/farmacologia , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Fentanila/efeitos adversos , Fentanila/farmacologia , Hipocampo/citologia , Hipocampo/fisiologia , Isoflurano/efeitos adversos , Isoflurano/farmacologia , Ketamina/efeitos adversos , Ketamina/farmacologia , Masculino , Medetomidina/efeitos adversos , Medetomidina/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Midazolam/efeitos adversos , Midazolam/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Coluna Vertebral/fisiologia , Xilazina/efeitos adversos , Xilazina/farmacologia
20.
Neuron ; 109(8): 1350-1364.e6, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33675685

RESUMO

Disturbed neuronal activity in neuropsychiatric pathologies emerges during development and might cause multifold neuronal dysfunction by interfering with apoptosis, dendritic growth, and synapse formation. However, how altered electrical activity early in life affects neuronal function and behavior in adults is unknown. Here, we address this question by transiently increasing the coordinated activity of layer 2/3 pyramidal neurons in the medial prefrontal cortex of neonatal mice and monitoring long-term functional and behavioral consequences. We show that increased activity during early development causes premature maturation of pyramidal neurons and affects interneuronal density. Consequently, altered inhibitory feedback by fast-spiking interneurons and excitation/inhibition imbalance in prefrontal circuits of young adults result in weaker evoked synchronization of gamma frequency. These structural and functional changes ultimately lead to poorer mnemonic and social abilities. Thus, prefrontal activity during early development actively controls the cognitive performance of adults and might be critical for cognitive symptoms in neuropsychiatric diseases.


Assuntos
Disfunção Cognitiva/fisiopatologia , Sincronização Cortical/fisiologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Rede Nervosa/crescimento & desenvolvimento , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...