Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4768, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849336

RESUMO

Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.


Assuntos
Prosencéfalo Basal , Neurônios GABAérgicos , Optogenética , Parvalbuminas , Animais , Parvalbuminas/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Masculino , Camundongos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Recompensa , Punição , Camundongos Endogâmicos C57BL , Aprendizagem/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Aprendizagem por Associação/fisiologia
2.
Sci Rep ; 13(1): 19478, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945922

RESUMO

Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.


Assuntos
Doença de Parkinson , Ratos , Camundongos , Animais , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Oxidopamina/farmacologia , Parte Compacta da Substância Negra/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , Substância Negra/metabolismo
4.
Nat Commun ; 14(1): 6159, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816713

RESUMO

Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia , Neurônios/metabolismo , Córtex Entorrinal/fisiologia , Ritmo Teta/fisiologia , Parvalbuminas/metabolismo , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia
6.
iScience ; 26(1): 105814, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36636356

RESUMO

Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.

7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142737

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.


Assuntos
Doença de Alzheimer , Acetilcolinesterase , Doença de Alzheimer/patologia , Animais , Ansiedade/patologia , Dexametasona , Modelos Animais de Doenças , Glucocorticoides , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sacarose , Proteínas tau
8.
Cell Rep ; 40(5): 111149, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926456

RESUMO

Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.


Assuntos
Hipocampo , Ritmo Teta , Potenciais de Ação/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Camundongos , Parvalbuminas/metabolismo , Ratos , Ritmo Teta/fisiologia
9.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35835556

RESUMO

Model selection is often implicit: when performing an ANOVA, one assumes that the normal distribution is a good model of the data; fitting a tuning curve implies that an additive and a multiplicative scaler describes the behavior of the neuron; even calculating an average implicitly assumes that the data were sampled from a distribution that has a finite first statistical moment: the mean. Model selection may be explicit, when the aim is to test whether one model provides a better description of the data than a competing one. As a special case, clustering algorithms identify groups with similar properties within the data. They are widely used from spike sorting to cell type identification to gene expression analysis. We discuss model selection and clustering techniques from a statistician's point of view, revealing the assumptions behind, and the logic that governs the various approaches. We also showcase important neuroscience applications and provide suggestions how neuroscientists could put model selection algorithms to best use as well as what mistakes should be avoided.


Assuntos
Algoritmos , Neurônios , Análise por Conglomerados , Neurônios/fisiologia , Distribuição Normal
10.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35201268

RESUMO

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Assuntos
Circulação Cerebrovascular/fisiologia , Microglia/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Purinérgicos/fisiologia , Adulto , Idoso , Animais , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Doenças das Artérias Carótidas/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Purinérgicos P2Y12/fisiologia , Vasodilatação/fisiologia , Vibrissas/inervação
12.
STAR Protoc ; 2(3): 100795, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34522902

RESUMO

High throughput, temporally controlled, reproducible quantitative behavioral assays are important for understanding the neural mechanisms underlying behavior. Here, we provide a step-by-step training protocol for a probabilistic Pavlovian conditioning task, where two auditory cues predict probabilistic outcomes with different contingencies. This protocol allows us to study the differential behavioral and neuronal correlates of expected and surprising outcomes. It has been tested in combination with chronic in vivo electrophysiological recordings and optogenetic manipulations in ChAT-Cre and PV-Cre mouse lines. For complete details on the use and execution of this protocol, please refer to Hegedüs et al. (2021).


Assuntos
Condicionamento Clássico/fisiologia , Eletrofisiologia/métodos , Optogenética/métodos , Animais , Comportamento Animal/fisiologia , Camundongos , Neurônios/fisiologia
13.
Sci Rep ; 11(1): 9775, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963220

RESUMO

Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo. The number of neurons exhibiting infrared-induced calcium response as well as the amplitude of those signals are shown to be both increasing with the energy density applied. By studying as well the spatial extent of the stimulation, we show that reproducibility of the stimulation is achieved mainly in the central part of the infrared beam path. Stimulating in vivo at such a degree of precision and without any exogenous chromophores enables multiple applications, from mapping the brain's connectome to applications in systems neuroscience and the development of new therapeutic tools for investigating the pathological brain.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Potenciais Evocados/fisiologia , Imageamento Tridimensional , Neurônios/fisiologia , Fótons , Córtex Visual/citologia , Animais , Raios Infravermelhos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
14.
iScience ; 24(4): 102377, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33912818

RESUMO

The ventral pallidum (VP) is interfacing striatopallidal and limbic circuits, conveying information about salience and valence crucial to adjusting behavior. However, how VP neuron populations with distinct electrophysiological properties (e-types) represent these variables is not fully understood. Therefore, we trained mice on probabilistic Pavlovian conditioning while recording the activity of VP neurons. Many VP neurons responded to punishment (54%), reward (48%), and outcome-predicting auditory stimuli (32%), increasingly differentiating distinct outcome probabilities through learning. We identified e-types based on the presence of bursts or fast rhythmic discharges and found that non-bursting, non-rhythmic neurons were the most sensitive to reward and punishment. Some neurons exhibited distinct responses of their bursts and single spikes, suggesting a multiplexed coding scheme in the VP. Finally, we demonstrate synchronously firing neuron assemblies, particularly responsive to reinforcing stimuli. These results suggest that electrophysiologically defined e-types of the VP differentially participate in transmitting reinforcement signals during learning.

15.
Sci Rep ; 10(1): 22362, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349672

RESUMO

Experiments aiming to understand sensory-motor systems, cognition and behavior necessitate training animals to perform complex tasks. Traditional training protocols require lab personnel to move the animals between home cages and training chambers, to start and end training sessions, and in some cases, to hand-control each training trial. Human labor not only limits the amount of training per day, but also introduces several sources of variability and may increase animal stress. Here we present an automated training system for the 5-choice serial reaction time task (5CSRTT), a classic rodent task often used to test sensory detection, sustained attention and impulsivity. We found that full automation without human intervention allowed rapid, cost-efficient training, and decreased stress as measured by corticosterone levels. Training breaks introduced only a transient drop in performance, and mice readily generalized across training systems when transferred from automated to manual protocols. We further validated our automated training system with wireless optogenetics and pharmacology experiments, expanding the breadth of experimental needs our system may fulfill. Our automated 5CSRTT system can serve as a prototype for fully automated behavioral training, with methods and principles transferrable to a range of rodent tasks.


Assuntos
Atenção , Comportamento de Escolha , Cognição , Tempo de Reação , Animais , Masculino , Camundongos
16.
Nat Commun ; 11(1): 4686, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943633

RESUMO

Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.


Assuntos
Encéfalo/diagnóstico por imagem , Eletrodos Implantados , Processamento de Imagem Assistida por Computador/métodos , Fibras Ópticas , Microtomografia por Raio-X/métodos , Animais , Comportamento Animal , Encéfalo/patologia , Mapeamento Encefálico , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/cirurgia , Técnicas Histológicas/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Silício , Técnicas Estereotáxicas
17.
Nat Neurosci ; 23(10): 1310, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32796932

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Front Neuroinform ; 14: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508613

RESUMO

Single cell electrophysiology remains one of the most widely used approaches of systems neuroscience. Decisions made by the experimenter during electrophysiology recording largely determine recording quality, duration of the project and value of the collected data. Therefore, online feedback aiding these decisions can lower monetary and time investment, and substantially speed up projects as well as allow novel studies otherwise not possible due to prohibitively low throughput. Real-time feedback is especially important in studies that involve optogenetic cell type identification by enabling a systematic search for neurons of interest. However, such tools are scarce and limited to costly commercial systems with high degree of specialization, which hitherto prevented wide-ranging benefits for the community. To address this, we present an open-source tool that enables online feedback during electrophysiology experiments and provides a Python interface for the widely used Open Ephys open source data acquisition system. Specifically, our software allows flexible online visualization of spike alignment to external events, called the online peri-event time histogram (OPETH). These external events, conveyed by digital logic signals, may indicate photostimulation time stamps for in vivo optogenetic cell type identification or the times of behaviorally relevant events during in vivo behavioral neurophysiology experiments. Therefore, OPETH allows real-time identification of genetically defined neuron types or behaviorally responsive populations. By allowing "hunting" for neurons of interest, OPETH significantly reduces experiment time and thus increases the efficiency of experiments that combine in vivo electrophysiology with behavior or optogenetic tagging of neurons.

19.
Nat Neurosci ; 23(8): 992-1003, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572235

RESUMO

Basal forebrain cholinergic neurons (BFCNs) modulate synaptic plasticity, cortical processing, brain states and oscillations. However, whether distinct types of BFCNs support different functions remains unclear. Therefore, we recorded BFCNs in vivo, to examine their behavioral functions, and in vitro, to study their intrinsic properties. We identified two distinct types of BFCNs that differ in their firing modes, synchronization properties and behavioral correlates. Bursting cholinergic neurons (Burst-BFCNs) fired synchronously, phase-locked to cortical theta activity and fired precisely timed bursts after reward and punishment. Regular-firing cholinergic neurons (Reg-BFCNs) were found predominantly in the posterior basal forebrain, displayed strong theta rhythmicity and responded with precise single spikes after behavioral outcomes. In an auditory detection task, synchronization of Burst-BFCNs to the auditory cortex predicted the timing of behavioral responses, whereas tone-evoked cortical coupling of Reg-BFCNs predicted correct detections. We propose that differential recruitment of two basal forebrain cholinergic neuron types generates behavior-specific cortical activation.


Assuntos
Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Sincronização Cortical/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Ritmo Teta/fisiologia
20.
Neuron ; 105(6): 951-953, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32191855

RESUMO

Noradrenergic cells of the locus coeruleus were associated with aversive learning and arousal. In this issue of Neuron, Kaufman et al. (2020) show that they also shape the spatial map after translocation of reward.


Assuntos
Locus Cerúleo , Células de Lugar , Cognição , Hipocampo , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...