Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(2): e29420, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38377121

RESUMO

Adolescents are the primary cohort for routine human papillomavirus (HPV) vaccination, but unvaccinated adults may also benefit. A lack of consensus on which adults to target and the presence of reimbursement barriers likely contribute to the lag in adult vaccinations, highlighting missed prevention opportunities. Understanding factors contributing to risk of HPV infection and disease could help in decision making on vaccination. This review summarizes existing literature on risk factors for HPV infection and disease and includes 153 studies reporting relative risks or odds ratios for factors associated with HPV infection or disease in adults, published between 2009 and 2020. Despite inconsistent design and reporting of risk factors across studies, this review confirmed several risk factors associated with adult infection, including human immunodeficiency virus positivity, number of sex partners, and smoking. These findings can support policymaking, guideline development, and clinical decision making for HPV vaccination and screening of high-risk adult groups.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Adulto , Adolescente , Humanos , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Fatores de Risco , Vacinação , Fumar , Papillomaviridae
3.
Nat Commun ; 12(1): 281, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436616

RESUMO

A functional association is uncovered between the ribosome-associated trigger factor (TF) chaperone and the ClpXP degradation complex. Bioinformatic analyses demonstrate conservation of the close proximity of tig, the gene coding for TF, and genes coding for ClpXP, suggesting a functional interaction. The effect of TF on ClpXP-dependent degradation varies based on the nature of substrate. While degradation of some substrates are slowed down or are unaffected by TF, surprisingly, TF increases the degradation rate of a third class of substrates. These include λ phage replication protein λO, master regulator of stationary phase RpoS, and SsrA-tagged proteins. Globally, TF acts to enhance the degradation of about 2% of newly synthesized proteins. TF is found to interact through multiple sites with ClpX in a highly dynamic fashion to promote protein degradation. This chaperone-protease cooperation constitutes a unique and likely ancestral aspect of cellular protein homeostasis in which TF acts as an adaptor for ClpXP.


Assuntos
Endopeptidase Clp/metabolismo , Chaperonas Moleculares/metabolismo , Proteólise , Sítios de Ligação , Endopeptidase Clp/química , Escherichia coli/genética , Proteínas de Escherichia coli , Deleção de Genes , Genoma Bacteriano , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Mutagênese , Peptídeos/metabolismo , Peptidilprolil Isomerase , Filogenia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Multimerização Proteica , Ribossomos/metabolismo , Especificidade por Substrato , Proteínas Virais/metabolismo
4.
EMBO Mol Med ; 10(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30181117

RESUMO

Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Animais , Caenorhabditis elegans , Técnicas Citológicas/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Indóis/metabolismo , Camundongos , Oximas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biologia de Sistemas/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...