Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Sci ; 339: 111962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103696

RESUMO

The Arabidopsis MAP Kinases (MAPKs) MPK6 and MPK3 and orthologs in other plants function as major stress signaling hubs. MAPKs are activated by phosphorylation and are negatively regulated by MAPK-inactivating phosphatases (MIPPs), which alter the intensity and duration of MAPK signaling via dephosphorylation. Unlike in other plant species, jasmonic acid (JA) accumulation in Arabidopsis is apparently not MPK6- and MPK3-dependent, so their role in JA-mediated defenses against herbivorous insects is unclear. Here we explore whether changes in MPK6/3 phosphorylation kinetics in Arabidopsis MIPP mutants lead to changes in hormone synthesis and resistance against herbivores. The MIPPs MKP1, DsPTP1, PP2C5, and AP2C1 have been implicated in responses to infection, drought, and osmotic stress, which all impinge on JA-mediated defenses. In loss-of-function mutants, we found that the four MIPPs alter wound-induced MPK6/3 phosphorylation kinetics and affect the accumulation of the defense hormones JA, abscisic acid, and salicylic acid, as compared to wild type plants (Col-0). Moreover, MPK6/3 misregulation in MIPP or MAPK mutant plants resulted in slight changes in the resistance to Trichoplusia ni and Spodoptera exigua larvae as compared to Col-0. Our data indicate that MPK6/3 and the four MIPPs moderately contribute to wound signaling and defense against herbivorous insects in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases
2.
Front Plant Sci ; 5: 550, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360141

RESUMO

Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...