Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080154

RESUMO

Phosphodiesterase type 5 (PDE5) inhibitors play a crucial role in blocking PDE5 to improve erectile dysfunction (ED). However, most PDE5 drugs revealed side effects including the loss of vision due to the PDE6 inhibition. Phenanthrene derivatives isolated from E. macrobulbon were previously reported as PDE5 inhibitors. Two phenanthrene derivatives (cpds 1-2) revealed better inhibition to PDE5 than PDE6 and cpd 1 is more selective to PDE5 than cpd 2. To elucidate why the phenanthrene derivatives could inhibit PDE5 and PDE6, their binding modes were investigated using molecular dynamics simulations and quantum chemical calculations, as compared to the PDE5 drugs. From the results, all four drugs and phenanthrene derivatives revealed similar π-π interactions to Phe820 in PDE5. Additional H-bond interaction to Gln817 in PDE5 resulted in better PDE5 inhibition of vardenafil and tadalafil. Moreover, cpds 1-2 were able to form the H-bond interaction with Asp764 in PDE5. In the case of the PDE6, the loss of π-π interaction to Phe776 and H-bond interaction to Gln773 indicated the important points for losing the PDE6 inhibition. In conclusion, to develop the new potent PDE5 inhibitors, not only the important interaction with PDE5 but also the interaction with PDE6 should be considered. In phenanthrene derivatives, the middle ring was significant to form π-π interactions to Phe820 in PDE5 and hydroxyl substituent was also the key part to form the H-bond interaction with Asp764 in PDE5. Principal component analysis (PCA) and free energy landscape (FEL) analysis indicated the stability of the system. The bioavailability, drug-likeness, and pharmacokinetics of phenanthrene derivatives were also predicted. These derivatives revealed good drug-likeness and GI absorption. The obtained results showed that phenanthrene derivatives could be interesting for the development of PDE5 inhibitors in the future.

2.
J Chem Inf Model ; 64(15): 5991-6002, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993154

RESUMO

Mycobacterium tuberculosis is the single most important global infectious disease killer and a World Health Organization critical priority pathogen for development of new antimicrobials. M. tuberculosis DNA gyrase is a validated target for anti-TB agents, but those in current use target DNA breakage-reunion, rather than the ATPase activity of the GyrB subunit. Here, virtual screening, subsequently validated by whole-cell and enzyme inhibition assays, was applied to identify candidate compounds that inhibit M. tuberculosis GyrB ATPase activity from the Specs compound library. This approach yielded six compounds: four carbazole derivatives (1, 2, 3, and 8), the benzoindole derivative 11, and the indole derivative 14. Carbazole derivatives can be considered a new scaffold for M. tuberculosis DNA gyrase ATPase inhibitors. IC50 values of compounds 8, 11, and 14 (0.26, 0.56, and 0.08 µM, respectively) for inhibition of M. tuberculosis DNA gyrase ATPase activity are 5-fold, 2-fold, and 16-fold better than the known DNA gyrase ATPase inhibitor novobiocin. MIC values of these compounds against growth of M. tuberculosis H37Ra are 25.0, 3.1, and 6.2 µg/mL, respectively, superior to novobiocin (MIC > 100.0 µg/mL). Molecular dynamics simulations of models of docked GyrB:inhibitor complexes suggest that hydrogen bond interactions with GyrB Asp79 are crucial for high-affinity binding of compounds 8, 11, and 14 to M. tuberculosis GyrB for inhibition of ATPase activity. These data demonstrate that virtual screening can identify known and new scaffolds that inhibit both M. tuberculosis DNA gyrase ATPase activity in vitro and growth of M. tuberculosis bacteria.


Assuntos
Antituberculosos , DNA Girase , Indóis , Mycobacterium tuberculosis , Inibidores da Topoisomerase II , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , DNA Girase/metabolismo , DNA Girase/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Indóis/farmacologia , Indóis/química , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
3.
Biochemistry ; 63(11): 1493-1504, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742407

RESUMO

DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including Mycobacterium tuberculosis, which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (A2B2) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of M. tuberculosis GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of M. tuberculosis DNA gyrase relative to those from other bacterial species.


Assuntos
Adenosina Trifosfatases , DNA Girase , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , DNA Girase/metabolismo , DNA Girase/química , DNA Girase/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transdução de Sinais
4.
Chem Biol Interact ; 396: 111040, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735453

RESUMO

Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.


Assuntos
Vírus da Dengue , Simulação de Acoplamento Molecular , Peptídeos , Relação Quantitativa Estrutura-Atividade , Serina Endopeptidases , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Antivirais/química , Antivirais/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Proteases Virais
5.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725091

RESUMO

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Assuntos
Transcriptase Reversa do HIV , Vírus da Imunodeficiência Felina , Inibidores da Transcriptase Reversa , Animais , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Gatos , Vírus da Imunodeficiência Felina/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , Humanos , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Alcinos/química , Alcinos/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Ciclopropanos/farmacologia , Ciclopropanos/química , Simulação de Acoplamento Molecular , Benzoxazinas/química , Benzoxazinas/farmacologia
6.
ACS Omega ; 9(14): 16311-16321, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617639

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, affecting over 50 million people worldwide. Currently, most approved medications for AD inhibit the activity of acetylcholinesterase (AChE), but these treatments often come with harmful side effects. There is growing interest in the use of natural compounds for disease prevention, alleviation, and treatment. This trend is driven by the anticipation that these substances may incur fewer side effects than existing medications. This research presents a computational approach combining machine learning with structural modeling to discover compounds from medicinal mushrooms with a high potential to inhibit the activity of AChE. First, we developed a deep neural network capable of rapidly screening a vast number of compounds to indicate their potential to inhibit AChE activity. Subsequently, we applied deep learning models to screen the compounds in the BACMUSHBASE database, which catalogs the bioactive compounds from cultivated and wild mushroom varieties local to Thailand, resulting in the identification of five promising compounds. Next, the five identified compounds underwent molecular docking techniques to calculate the binding energy between the compounds and AChE. This allowed us to refine the selection to two compounds, erinacerin A and hericenone B. Further analysis of the binding energy patterns between these compounds and the target protein revealed that both compounds displayed binding energy profiles similar to the combined characteristics of donepezil and galanthamine, the prescription drugs for AD. We propose that these two compounds, derived from Hericium erinaceus (also known as lion's mane mushroom), are suitable candidates for further research and development into symptom-alleviating AD medications.

7.
J Mol Graph Model ; 129: 108746, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38401250

RESUMO

In pursuit of new acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease (AD), a series of ten previously synthesized isoconessimine compounds (7a-7j) was in silico investigated for their binding interactions with AChE and pharmacokinetics based on absorption, distribution, metabolism, and excretion (ADME) properties using molecular docking, ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics) method and SwissADME tools. Docking experiments showed that all compounds bind within the active site gorge of AChE (PDB entry 1C2B), posing its aryloxy-substitutional ethyl group to catalytic site and conessine skeleton to peripheral anionic site. ONIOM interaction energy was used as an ONIOM score to improve docking score, and it ranked 7b as the most potent AChE inhibitor, in agreement with previous experiment. Residues, ASP74, TRP86, GLY122, GLU202, TRP286, GLU292, SER293, ILE294, TYR337, TYR341, and HIS447 were identified as important for the binding of the AChE-isoconessimine complex. The SwissADME investigation suggested that four compounds (7a, 7c, 7d and 7f) agree with the rules of drug-likeness. The steric and electronic effects on the aryloxy-substitutional ethyl group as important factors in the AChE inhibition were also discussed, which brings a better understanding of Alzheimer's disease drug development.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Simulação de Dinâmica Molecular
8.
ACS Omega ; 8(41): 38373-38385, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867669

RESUMO

The mammalian target of rapamycin (mTOR) is a protein kinase of the PI3K/Akt signaling pathway that regulates cell growth and division and is an attractive target for cancer therapy. Many reports on finding alternative mTOR inhibitors available in a database contain a mixture of active compound data with different mechanisms, which results in an increased complexity for training the machine learning models based on the chemical features of active compounds. In this study, a deep learning model supported by principal component analysis (PCA) and structural methods was used to search for an alternative mTOR inhibitor from mushrooms. The mTORC1 active compound data set from the PubChem database was first filtered for only the compounds resided near the first-generation inhibitors (rapalogs) within the first two PCA coordinates of chemical features. A deep learning model trained by the filtered data set captured the main characteristics of rapalogs and displayed the importance of steroid cores. After that, another layer of virtual screening by molecular docking calculations was performed on ternary complexes of FKBP12-FRB domains and six compound candidates with high "active" probability scores predicted by the deep learning models. Finally, all-atom molecular dynamics simulations and MMPBSA binding energy analysis were performed on two selected candidates in comparison to rapamycin, which confirmed the importance of ring groups and steroid cores for interaction networks. Trihydroxysterol from Lentinus polychrous Lev. was predicted as an interesting candidate due to the small but effective interaction network that facilitated FKBP12-FRB interactions and further stabilized the ternary complex.

9.
Biophys Chem ; 302: 107109, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748430

RESUMO

Coxsackievirus B3 (CVB3), a serotype of enterovirus B, causes hand, foot, and mouth disease; pericarditis; and myocarditis. A benzene sulfonamide derivative is reported to have inhibitory activity against wild-type (WT) and eight mutants of the viral capsid of CVB3. Furthermore, the crystal structure of the complex formed between WT viral capsid of CVB3 and the derivative revealed binding at a novel druggable interprotomer pocket. We investigated how the compound could be a potent inhibitor of both WT and some mutants of CVB3 by determining binding to the viral capsid and the interaction energy with the binding pocket based on molecular dynamics simulations and density functional theory. We found that hydrogen bonds, pi-pi interactions, and electrostatic interactions are the key interactions with a protomer unit of CVB3 viral capsid. The residual interaction energy determined using density functional theory revealed key binding with VP1:Arg234 and a residue in the nearby VP1 unit (VP1':Arg219). These results explain why the compound is still a potent inhibitor against eight mutants. Moreover, the decreased inhibitory activity for some mutants could be explained by the calculated binding energy and the highest occupied molecular orbital and lowest unoccupied molecular orbital energy. The results will be helpful for the development of drugs resistant to CVB3.

10.
Protein J ; 42(6): 741-752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728788

RESUMO

Human immunodeficiency virus (HIV)-1 reverse transcriptase (HIV-1 RT) is responsible for the transcription of viral RNA genomes into DNA genomes and has become an important target for the treatment of acquired immune deficiency syndrome (AIDS). This study used biophysical techniques to characterize the HIV-1 RT structure, monomer forms, and the non-nucleoside reverse transcriptase inhibitors (NNRTIs) bound forms. Inactive p66W401A and p51W401A were selected as models to study the HIV-1 RT monomer structures. Nuclear magnetic resonance (NMR) spectroscopy revealed that the unliganded forms of p66W401A protein and p51W401A protein had similar conformation to each other in solution. The complexes of p66W401A or p51W401A with inhibitors showed similar conformations to p66 in the RT heterodimer bound to the NNRTIs. Furthermore, the results of paramagnetic relaxation enhancement (PRE)-assisted NMR revealed that the unliganded forms of the p66W401A and p51W401A conformations were different from the unliganded heterodimer, characterized by a greater distance between the fingers and thumb subdomains. Small-angle X-ray scattering (SAXS) experiments confirmed that p66W401A and p51W401A can bind with inhibitors, similar to the p66/p51 heterodimer. The findings of this study increase the structural knowledge base of HIV-1 RT monomers, which may be helpful in the future design of potent viral inhibitors.

11.
J Mol Graph Model ; 125: 108619, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666055

RESUMO

Structures and UV-vis absorption spectra of the host-guest interaction of the methoxy cinnamic acid (MCA) derivatives and cyclodextrins (CDs) were performed by using the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. All geometries of MCA derivatives (4-MCA, 245-MCA, 246-MCA), three types of CD (αCD, ßCD, γCD), and five host-guest inclusion complexes between MCA and CD consisting of 4-MCA/αCD (1), 4-MCA/ßCD (2), 245-MCA/ßCD (3), 246-MCA/ßCD (4), and 246-MCA/γCD (5) were fully optimized by using the M06-2X/6-31G (d,p) levels of theory. Two orientations (A and B) of the MCA guest molecule were considered. Upon examining the optimized geometry, five complexes of the methoxy cinnamic acid molecules are located inside the cavity of CD. Orientation B was more stable than orientation A because of the stronger intermolecular hydrogen bonds between the hydroxyl group of CD and the carboxylic group of MCA. The results indicated that the intermolecular hydrogen bond is mainly the driving force of formation between methoxy cinnamic acid and cyclodextrins. To reveal the host-guest interaction that is relevant to UV-filter compounds, the UV-vis absorption spectra were performed using TD-DFT calculations. The obtained results confirmed that orientation B is the most stable orientation and can absorb in both UVB and UVA regions which is similar to the parent MCA. Therefore, this knowledge will bring to understand the host-guest interaction between methoxy cinnamic acid and cyclodextrin complexes. The theoretical results are expected to provide valuable information for improving the stability of further UV-filter compounds.


Assuntos
Ciclodextrinas , Teoria da Densidade Funcional , Hidrogênio , Ligação de Hidrogênio
12.
Chem Biol Interact ; 384: 110717, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726065

RESUMO

The crystal structure of the Thermoanaerobacterium xylanolyticum in glycoside hydrolase family 116 (TxGH116) ß-glucosidase provides a structural model for human GBA2 glucosylceramidase, an enzyme defective in hereditary spastic paraplegia and a potential therapeutic target for treating Gaucher disease. To assess the therapeutic potential of known inhibitors, the X-ray structure of TxGH116 in complex with isofagomine (IFG) was determined at 2.0 Å resolution and showed the IFG bound in a relaxed chair conformation. The binding of IFG and 7 other iminosugar inhibitors to wild-type and mutant enzymes (Asp508His and Arg786His) mimicking GBA2 pathogenic variants was then evaluated computationally by two-layered ONIOM calculations (at the B3LYP:PM7 level). Calculations showed that six charged residues, Glu441, Asp452, His507, Asp593, Glu777, and Arg786 influence inhibitor binding most. His507, Glu777 and Arg786, form strong hydrogen bonds with the inhibitors (∼1.4-1.6 Å). Thus, the missense mutation of one of these residues in Arg786His has a greater effect on the interaction energies for all inhibitors compared to Asp508His. In line with the experimental data for the inhibitors that have been tested, the favorable interaction energy between the inhibitors and the TxGH116 protein followed the trend: isofagomine > 1-deoxynojirimycin > glucoimidazole > N-butyl-deoxynojirimycin ≈ N-nonyl-deoxynojirimycin > conduritol B epoxide ≈ azepane 1 > azepane 2. The obtained structural and energetic properties and comparison to the GBA2 model can lead to understanding of structural requirement for inhibitor binding in GH116 to aid the design of high potency GBA2 inhibitors.

13.
J Chem Inf Model ; 63(9): 2707-2718, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074047

RESUMO

Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 µM. The most active compound 1 showed an IC50 value of 0.42 µM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 µM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , DNA Girase/química , Adenilil Imidodifosfato/uso terapêutico , Adenosina Trifosfatases/química , Células CACO-2 , Antituberculosos/farmacologia , Antituberculosos/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/uso terapêutico , DNA
14.
Phys Chem Chem Phys ; 25(12): 8767-8778, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912034

RESUMO

Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of ß-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding N-carbamoyl-ß-amino acids. This enzyme has the potential to be used as a tool in the production of ß-amino acids. Here, the reaction mechanism and origin of stereospecificity of DHPases from Saccharomyces kluyveri and Sinorhizobium meliloti CECT4114 were investigated and compared using a quantum mechanical cluster approach based on density functional theory. Two models of the enzyme active site were designed from the X-ray crystal structure of the native enzyme: a small cluster to characterize the mechanism and the stationary points and a large model to probe the stereospecificity and the role of stereo-gate-loop (SGL) residues. It is shown that a hydroxide ion first performs a nucleophilic attack on the substrate, followed by the abstraction of a proton by Asp358, which occurs concertedly with protonation of the ring nitrogen by the same residue. For the DHT substrate, the enzyme displays a preference for the L-configuration, in good agreement with experimental observation. Comparison of the reaction energetics of the two models reveals the importance of SGL residues in the stereospecificity of catalysis. The role of the conserved Tyr172 residue in transition-state stabilization is confirmed as the Tyr172Phe mutation increases the activation barrier of the reaction by ∼8 kcal mol-1. A detailed understanding of the catalytic mechanism of the enzyme could offer insight for engineering in order to enhance its activity and substrate scope.


Assuntos
Amidoidrolases , Prótons , Amidoidrolases/química , Domínio Catalítico , Aminoácidos
15.
J Tradit Complement Med ; 13(1): 1-10, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685072

RESUMO

Background and aim: Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure: A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion: The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 µM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.

16.
Heliyon ; 9(1): e12667, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618128

RESUMO

SARS-CoV-2 virus continues to evolve and mutate causing most of the mutated variants resist to many of the therapeutic monoclonal antibodies (mAbs). Despite several mAbs retained neutralizing capability for Omicron BA.1 and BA.2, reduction in neutralization potency was reported. Hence, effort of searching for mAb that is broader in neutralization breadth without losing the neutralizing ability is continued. MW06 was reported with capability in neutralizing most of the variants of concern (VOC) and it binds to the conserved region (left flank) near epitope mAb sotrovimab (S309). In this study, binding affinity of mAb MW06 and its cocktail formulation with MW05 for receptor binding domain (RBD) SARS-CoV-2 virus was investigated under molecular dynamics simulations (MDs). Binding free energies computed by Molecular Mechanics Generalised Born Surface Area (MM-GBSA) algorithm predicted the binding affinity of MW06 for RBD BA.1 (-53 kcal/mol) as strong as RBD wildtype (-58 kcal/mol) while deterioration was observed for RBD BA.2 (-43 kcal/mol). Alike S309 and MW06, simulated cocktail mAb (MW05 and MW06)-RBD interactions suggested the neutralizing capability of the cocktail formulation for RBD BA.1 and BA.2 reduced. Meanwhile, residue pairs that favour the communication between the mAb and RBD have been identified by decomposing the free energy per pairwise residue basis. Apart from understanding the effects of mutation occurred in the RBD region on human angiotensin-converting enzyme 2 (hACE2) binding, impact of heavily mutated RBD on mAb-RBD interactions was investigated in this study as well. In addition to energetic profile obtained from MDs, plotting the dynamics cross-correlation map of the mAb-RBD complex under elastic network model (ENM) was aimed to understand the cross-correlations between residue fluctuations. It allows simple and rapid analysis on the motions or dynamics of the protein residues of mAbs and RBD in complex. Protein residues having correlated motions are normally part of the structural domains of the protein and their respective motions and protein function are related. Motion of mutated RBD residues and mAb residues was less correlated while their respective interactions energy computed to be higher. The combined techniques of MDs and ENM offered simplicity in understanding dynamics and energy contribution that explain binding affinity of mAb-RBD complexes.

17.
J Biomol Struct Dyn ; 41(12): 5728-5743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35815526

RESUMO

Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target enzyme in malarial chemotherapy. An understanding of how novel inhibitors interact with wild-type (wtPfDHFR), quadruple-mutant (qmPfDHFR), and human (hDHFR) enzymes is required for the development of these compounds as antimalarials. This study is focused on a series of des-Cl and m-Cl phenyl analogs of pyrimethamine with various flexible 6-substituents. The interactions of these compounds with DHFR enzymes were investigated by 3 D-QSAR, MD simulations, MM-PBSA, and DFT calculations. CoMFA and CoMSIA models were developed with good predictive abilities for wtPfDHFR and qmPfDHFR. For hDHFR, CoMSIA models combined with clogP descriptor were successfully derived. Binding free energy using MM-PBSA and comparison of per residue decomposition energy analyses with the DFT method at M06-2X/6-31G ++(d,p) level of theory indicated that Asp54 and Phe58 play important roles in the binding of the most potent compound in the series (compound 27) with both wtPfDHFR and qmPfDHFR, whereas Arg59 and Arg122 were additionally found to interact with this inhibitor in qmPfDHFR. For hDHFR, the residues Glu30 and Phe34 but not Arg70, equivalent to Asp54, Phe58, and Arg122 in PfDHFR, also play role in compound 27 binding through strong hydrophobic interactions (Phe34) and hydrogen bond network with Glu30, Ile7, and Val115. From the key interactions identified in the DHFR-inhibitor complexes, a general scheme is proposed for designing new inhibitors selective for PfDHFR that is important for the development of novel antifolate antimalarials.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Humanos , Pirimetamina/farmacologia , Pirimetamina/química , Antimaláricos/química , Relação Quantitativa Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Plasmodium falciparum , Antagonistas do Ácido Fólico/química
18.
Bioorg Med Chem ; 76: 117092, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36450167

RESUMO

We report the synthesis, and characterization of twenty-nine new inhibitors of PDE5. Structure-based design was employed to modify to our previously reported 2,4-diaminoquinazoline series. Modification include scaffold hopping to 2,6-diaminopurine core as well as incorporation of ionizable groups to improve both activity and solubility. The prospective binding mode of the compounds was determined using 3D ligand-based similarity methods to inhibitors of known binding mode, combined with a PDE5 docking and molecular dynamics based-protocol, each of which pointed to the same binding mode. Chemical modifications were then designed to both increase potency and solubility as well as validate the binding mode prediction. Compounds containing a quinazoline core displayed IC50s ranging from 0.10 to 9.39 µM while those consisting of a purine scaffold ranging from 0.29 to 43.16 µM. We identified 25 with a PDE5 IC50 of 0.15 µM, and much improved solubility (1.77 mg/mL) over the starting lead. Furthermore, it was found that the predicted binding mode was consistent with the observed SAR validating our computationally driven approach.


Assuntos
Inibidores da Fosfodiesterase 5 , Inibidores da Fosfodiesterase 5/farmacologia , Estudos Prospectivos , Quinazolinas/farmacologia
19.
Vet World ; 15(7): 1601-1609, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36185533

RESUMO

Background and Aim: Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses associated with chronic and neoplastic diseases in domestic and non-domestic cats. There has been increasing interest in the clinical importance of feline retroviruses in Thailand and the identification of associated risk factors in domestic cats. To prevent the spread of retroviral diseases and improve the management of retrovirus-infected cats, risk factors and associated clinical laboratory data must be clearly understood. This study aimed to identify the influence of household, lifestyle, health status, sterilization, clinical presentations, and laboratory findings on FIV- and FeLV-infected cats in Bangkok, Thailand. Materials and Methods: A total of 480 cats were evaluated for FeLV p27 antigen and FIV antibodies using Witness FeLV-FIV Rapid Test and SNAP FIV/FeLV Combo Test at a veterinary hospital service. Results: Of the 480 cats tested, 113 were positive for virus infection, including 60 for FeLV (12.5%), 40 for FIV (8.3%), and 13 for both FeLV and FIV (2.7%). The findings revealed that the risk factors for cats infected with FeLV, FIV, or both FeLV and FIV were significantly different compared with those for non-infected cats (p < 0.05). Multivariate analysis showed that multi-cat ownership is a risk factor for the high prevalence of feline retrovirus infection, as multi-cat households exhibited a higher prevalence of infection than single-cat households. Anemic and sick cats were also at a greater risk of testing positive for specific retrovirus infections. FeLV-infected cats had a higher risk of anemia and low erythrocyte and thrombocyte counts (p ≤ 0.0001), whereas FIV-infected cats were more likely to have anemia and leukocytopenia than controls. Conclusion: Knowledge of the risk factors for retroviral diseases and associated clinical and laboratory findings can be used to develop strategies to reduce FIV and FeLV infections in cats.

20.
Chem Biol Interact ; 368: 110227, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302488

RESUMO

Acetylcholinesterase (AChE) is currently one of the potent targets for the treatment of Alzheimer's disease (AD). The discovery of promising new AChE inhibitors using a hybridisation method is considered as one of the effective strategies to overcome AD. In this study, potent hybrid donepezils previously reported as AChE inhibitors were investigated to gain an insight into the key binding interaction of their scaffolds, using molecular docking, molecular dynamics simulations and quantum chemical calculations. The results indicated that the key interactions found in both donepezil and the selected hybrid donepezils were the π-π interaction to Trp86 in the catalytic anionic site (CAS) and Trp286 and Tyr341 in the peripheral anionic site (PAS) in the AChE binding pocket. Moreover, the modification of the scaffolds revealed the adaptation of the orientation in the binding pocket and additional important interactions from the modified scaffold, such as H-bond and H-π interactions to Asp74, Tyr124 and Tyr337. In addition, the HOMO-LUMO prediction indicated the binding interaction by considering the electron transfer between the hybrid donepezils and key residues, such as Trp86 and Trp286. The bioavailability, drug-likeness and pharmacokinetics predictions confirmed the suitability of the hybrid donepezils for AD drug development. Most of the selected hybrid donepezils revealed good bioavailability, drug-likeness properties and pharmacokinetics; however, some need improved pharmacokinetic properties. The obtained information highlights the significance of the scaffold from the hybridisation method, which will be helpful for AD drug design and development in the future.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/química , Donepezila , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doença de Alzheimer/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...