Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15181, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704641

RESUMO

Demographic consequences of rapid environmental change and extreme climatic events (ECEs) can cascade across trophic levels with evolutionary implications that have rarely been explored. Here, we show how an ECE in high Arctic Svalbard triggered a trophic chain reaction, directly or indirectly affecting the demography of both overwintering and migratory vertebrates, ultimately inducing a shift in density-dependent phenotypic selection in migratory geese. A record-breaking rain-on-snow event and ice-locked pastures led to reindeer mass starvation and a population crash, followed by a period of low mortality and population recovery. This caused lagged, long-lasting reductions in reindeer carrion numbers and resultant low abundances of Arctic foxes, a scavenger on reindeer and predator of migratory birds. The associated decrease in Arctic fox predation of goose offspring allowed for a rapid increase in barnacle goose densities. As expected according to r- and K-selection theory, the goose body condition (affecting reproduction and post-fledging survival) maximising Malthusian fitness increased with this shift in population density. Thus, the winter ECE acting on reindeer and their scavenger, the Arctic fox, indirectly selected for higher body condition in migratory geese. This high Arctic study provides rare empirical evidence of links between ECEs, community dynamics and evolution, with implications for our understanding of indirect eco-evolutionary impacts of global change.


Assuntos
Raposas , Rena , Animais , Patos , Gansos , Carne
3.
Ecology ; 104(11): e4158, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632351

RESUMO

Spatially synchronized population dynamics are common in nature, and understanding their causes is key for predicting species persistence. A main driver of synchrony between populations of the same species is shared environmental conditions, which cause populations closer together in space to be more synchronized than populations further from one another. Most theoretical and empirical understanding of this driver considers resident species. For migratory species, however, the degree of spatial autocorrelation in the environment may change across seasons and vary by their geographic location along the migratory route or on a nonbreeding ground, complicating the synchronizing effect of the environment. Migratory species show a variety of different strategies in how they disperse to and aggregate on nonbreeding grounds, ranging from completely shared nonbreeding grounds to multiple different ones. Depending on the sensitivity to environmental conditions off the breeding grounds, we can expect that migration and overwintering strategies will impact the extent and spatial pattern of population synchrony on the breeding grounds. Here, we use spatial population-dynamic modeling and simulations to investigate the relationship between seasonal environmental autocorrelation and migration characteristics. Our model shows that the effects of environmental autocorrelation experienced off the breeding ground on population synchrony depend on the number and size of nonbreeding grounds, and how populations migrate in relation to neighboring populations. When populations migrated to multiple nonbreeding grounds, spatial population synchrony increased with increasing environmental autocorrelation between nonbreeding grounds. Populations that migrated to the same place as near neighbors had higher synchrony at short distances than populations that migrated randomly. However, synchrony declined less across increasing distances for the random migration strategy. The differences in synchrony between migration strategies were most pronounced when the environmental autocorrelation between nonbreeding grounds was low. These results show the importance of considering migration when studying spatial population synchrony and predicting patterns of synchrony and population viability under global environmental change. Climate change and habitat loss and fragmentation may cause range shifts and changes in migratory strategies, as well as changes in the mean and spatial autocorrelation of the environment, which can alter the scale and patterns observed in spatial population synchrony.


Assuntos
Mudança Climática , Ecossistema , Estações do Ano , Dinâmica Populacional , Migração Animal
4.
J Anim Ecol ; 92(9): 1904-1918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448134

RESUMO

Spatial population synchrony is common among populations of the same species and is an important predictor of extinction risk. Despite the potential consequences for metapopulation persistence, we still largely lack understanding of what makes one species more likely to be synchronized than another given the same environmental conditions. Generally, environmental conditions in a shared environment or a species' sensitivity to the environment can explain the extent of synchrony. Populations that are closer together experience more similar fluctuations in their environments than those populations that are further apart and are therefore more synchronized. The relative importance of environmental and demographic stochasticity for population dynamics is strongly linked to species' life-history traits, such as pace of life, which may impact population synchrony. For populations that migrate, there may be multiple environmental conditions at different locations driving synchrony. However, the importance of life history and migration tactics in determining patterns of spatial population synchrony have rarely been explored empirically. We therefore hypothesize that increasing generation time, a proxy for pace of life, would decrease spatial population synchrony and that migrants would be less synchronized than resident species. We used population abundance data on breeding birds from four countries to investigate patterns of spatial population synchrony in growth rate and abundance. We calculated the mean spatial population synchrony between log-transformed population growth rates or log-transformed abundances for each species and country separately. We investigated differences in synchrony across generation times in resident (n = 67), short-distance migrant (n = 86) and long-distance migrant (n = 39) bird species. Species with shorter generation times were more synchronized than species with longer generation times. Short-distance migrants were more synchronized than long-distance migrants and resident birds. Our results provide novel empirical links between spatial population synchrony and species traits known to be of key importance for population dynamics, generation time and migration tactics. We show how these different mechanisms can be combined to understand species-specific causes of spatial population synchrony. Understanding these specific drivers of spatial population synchrony is important in the face of increasingly severe threats to biodiversity and could be key for successful future conservation outcomes.


Assuntos
Ecossistema , Crescimento Demográfico , Animais , Estações do Ano , Dinâmica Populacional , Aves
5.
Ecol Lett ; 25(4): 863-875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35103374

RESUMO

Harvesting can magnify the destabilising effects of environmental perturbations on population dynamics and, thereby, increase extinction risk. However, population-dynamic theory predicts that impacts of harvesting depend on the type and strength of density-dependent regulation. Here, we used logistic population growth models and an empirical reindeer case study to show that low to moderate harvesting can actually buffer populations against environmental perturbations. This occurs because of density-dependent environmental stochasticity, where negative environmental impacts on vital rates are amplified at high population density due to intra-specific resource competition. Simulations from our population models show that even low levels of harvesting may prevent overabundance, thereby dampening population fluctuations and reducing the risk of population collapse and quasi-extinction following environmental perturbations. Thus, depending on the species' life history and the strength of density-dependent environmental drivers, low to moderate harvesting can improve population resistance to increased climate variability and extreme weather expected under global warming.


Assuntos
Dinâmica Populacional , Modelos Logísticos , Densidade Demográfica
6.
Ecol Lett ; 24(2): 227-238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33184991

RESUMO

Environmental change influences fitness-related traits and demographic rates, which in herbivores are often linked to resource-driven variation in body condition. Coupled body condition-demographic responses may therefore be important for herbivore population dynamics in fluctuating environments, such as the Arctic. We applied a transient Life-Table Response Experiment ('transient-LTRE') to demographic data from Svalbard barnacle geese (Branta leucopsis), to quantify their population-dynamic responses to changes in body mass. We partitioned contributions from direct and delayed demographic and body condition-mediated processes to variation in population growth. Declines in body condition (1980-2017), which positively affected reproduction and fledgling survival, had negligible consequences for population growth. Instead, population growth rates were largely reproduction-driven, in part through positive responses to rapidly advancing spring phenology. The virtual lack of body condition-mediated effects indicates that herbivore population dynamics may be more resilient to changing body condition than previously expected, with implications for their persistence under environmental change.


Assuntos
Herbivoria , Crescimento Demográfico , Migração Animal , Animais , Regiões Árticas , Gansos , Dinâmica Populacional , Estações do Ano , Svalbard
7.
Biol Lett ; 16(4): 20200075, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264780

RESUMO

Quantifying how key life-history traits respond to climatic change is fundamental in understanding and predicting long-term population prospects. Age at first reproduction (AFR), which affects fitness and population dynamics, may be influenced by environmental stochasticity but has rarely been directly linked to climate change. Here, we use a case study from the highly seasonal and stochastic environment in High-Arctic Svalbard, with strong temporal trends in breeding conditions, to test whether rapid climate warming may induce changes in AFR in barnacle geese, Branta leucopsis. Using long-term mark-recapture and reproductive data (1991-2017), we developed a multi-event model to estimate individual AFR (i.e. when goslings are produced). The annual probability of reproducing for the first time was negatively affected by population density but only for 2 year olds, the earliest age of maturity. Furthermore, advanced spring onset (SO) positively influenced the probability of reproducing and even more strongly the probability of reproducing for the first time. Thus, because climate warming has advanced SO by two weeks, this likely led to an earlier AFR by more than doubling the probability of reproducing at 2 years of age. This may, in turn, impact important life-history trade-offs and long-term population trajectories.


Assuntos
Gansos , Thoracica , Migração Animal , Animais , Regiões Árticas , Pré-Escolar , Serviços de Planejamento Familiar , Humanos , Reprodução , Estações do Ano , Svalbard
8.
Glob Chang Biol ; 26(2): 642-657, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31436007

RESUMO

Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population-dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non-hunted population of high-arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual-based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age-specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green-up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non-breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density-dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density-dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population-dynamic responses to global change in migratory species.


Assuntos
Mudança Climática , Gansos , Migração Animal , Animais , Regiões Árticas , Noruega , Estações do Ano , Svalbard
9.
Glob Chang Biol ; 25(11): 3656-3668, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31435996

RESUMO

The 'Moran effect' predicts that dynamics of populations of a species are synchronized over similar distances as their environmental drivers. Strong population synchrony reduces species viability, but spatial heterogeneity in density dependence, the environment, or its ecological responses may decouple dynamics in space, preventing extinctions. How such heterogeneity buffers impacts of global change on large-scale population dynamics is not well studied. Here, we show that spatially autocorrelated fluctuations in annual winter weather synchronize wild reindeer dynamics across high-Arctic Svalbard, while, paradoxically, spatial variation in winter climate trends contribute to diverging local population trajectories. Warmer summers have improved the carrying capacity and apparently led to increased total reindeer abundance. However, fluctuations in population size seem mainly driven by negative effects of stochastic winter rain-on-snow (ROS) events causing icing, with strongest effects at high densities. Count data for 10 reindeer populations 8-324 km apart suggested that density-dependent ROS effects contributed to synchrony in population dynamics, mainly through spatially autocorrelated mortality. By comparing one coastal and one 'continental' reindeer population over four decades, we show that locally contrasting abundance trends can arise from spatial differences in climate change and responses to weather. The coastal population experienced a larger increase in ROS, and a stronger density-dependent ROS effect on population growth rates, than the continental population. In contrast, the latter experienced stronger summer warming and showed the strongest positive response to summer temperatures. Accordingly, contrasting net effects of a recent climate regime shift-with increased ROS and harsher winters, yet higher summer temperatures and improved carrying capacity-led to negative and positive abundance trends in the coastal and continental population respectively. Thus, synchronized population fluctuations by climatic drivers can be buffered by spatial heterogeneity in the same drivers, as well as in the ecological responses, averaging out climate change effects at larger spatial scales.


Assuntos
Rena , Animais , Regiões Árticas , Mudança Climática , Dinâmica Populacional , Estações do Ano , Neve , Svalbard
10.
J Anim Ecol ; 88(8): 1191-1201, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032900

RESUMO

Density regulation of the population growth rate occurs through negative feedbacks on underlying vital rates, in response to increasing population size. Here, we examine in a capital breeder how vital rates of different life-history stages, their elasticities and population growth rates are affected by changes in population size. We developed an integrated population model for a local population of Svalbard barnacle geese, Branta leucopsis, using counts, reproductive data and individual-based mark-recapture data (1990-2017) to model age class-specific survival, reproduction and number of individuals. Based on these estimates, we quantified the changes in demographic structure and the effect of population size on age class-specific vital rates and elasticities, as well as the population growth rate. Local density regulation at the breeding grounds acted to reduce population growth through negative effects on reproduction; however, population size could not explain substantial variation in survival rates, although there was some support for density-dependent first-year survival. With the use of prospective perturbation analysis of the density-dependent projection matrix, we show that the elasticities to different vital rates changed as population size increased. As population size approached carrying capacity, the influence of reproductive rates and early-life survival on the population growth rate was reduced, whereas the influence of adult survival increased. A retrospective perturbation analysis revealed that density dependence resulted in a positive contribution of reproductive rates, and a negative contribution of the numbers of individuals in the adult age class, to the realised population growth rate. The patterns of density dependence in this population of barnacle geese were different from those recorded in income breeding birds, where density regulation mainly occurs through an effect on early-life survival. This indicates that the population dynamics of capital breeders, such as the barnacle goose, are likely to be more reproduction-driven than is the case for income breeders.


Assuntos
Gansos , Thoracica , Migração Animal , Animais , Regiões Árticas , Dinâmica Populacional , Estudos Prospectivos , Estudos Retrospectivos , Estações do Ano , Svalbard
11.
Ecol Evol ; 6(7): 2139-48, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27066227

RESUMO

Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid-winter warm spells and heavy rain-on-snow events are already increasing in frequency in the Arctic, with implications for snow-pack and ground-ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid-winter rain-on-snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell-heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of Arctic plant responses to projected changes in winter climatic conditions.

12.
Ecology ; 97(1): 40-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008773

RESUMO

Life-history theory predicts that the vital rates that influence population growth the most should be buffered against environmental fluctuations due to selection for reduced variation. However, it remains unclear whether populations actually are influenced by such "demographic buffering," because variation in vital rates can be compared on different measurement scales, and there has been little attempt to investigate whether the choice of scale influences the chance of detecting demographic buffering. We compared two statistical approaches to examine whether demographic buffering has influenced vital rates in wild Svalbard reindeer (Rangifer tarandus platyrhynchus). To account for statistical variance constraints on vital rates limited between 0 and 1 in analyses of demographic buffering, one approach is to scale observed variation by the maximum possible variation on the arithmetic scale. When applying this approach, the results suggested that demographic buffering was occurring. However, when we applied an alternative approach that identified statistical variance constraints on the logit scale, there was no evidence for demographic buffering. Thus, the choice of measurement scale must be carefully considered before one can fully understand whether demographic buffering influences life histories. Defining the appropriate scale may require an understanding of the mechanisms through which demographic buffering may have evolved.


Assuntos
Modelos Biológicos , Rena/fisiologia , Envelhecimento , Animais , Feminino , Fertilidade , Masculino , Dinâmica Populacional , Projetos de Pesquisa
13.
Ecology ; 92(10): 1917-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22073783

RESUMO

Across the Arctic, heavy rain-on-snow (ROS) is an "extreme" climatic event that is expected to become increasingly frequent with global warming. This has potentially large ecosystem implications through changes in snowpack properties and ground-icing, which can block the access to herbivores' winter food and thereby suppress their population growth rates. However, the supporting empirical evidence for this is still limited. We monitored late winter snowpack properties to examine the causes and consequences of ground-icing in a Svalbard reindeer (Rangifer tarandus platyrhynchus) metapopulation. In this high-arctic area, heavy ROS occurred annually, and ground-ice covered from 25% to 96% of low-altitude habitat in the sampling period (2000-2010). The extent of ground-icing increased with the annual number of days with heavy ROS (> or = 10 mm) and had a strong negative effect on reindeer population growth rates. Our results have important implications as a downscaled climate projection (2021-2050) suggests a substantial future increase in ROS and icing. The present study is the first to demonstrate empirically that warmer and wetter winter climate influences large herbivore population dynamics by generating ice-locked pastures. This may serve as an early warning of the importance of changes in winter climate and extreme weather events in arctic ecosystems.


Assuntos
Mudança Climática , Comportamento Alimentar/fisiologia , Gelo , Chuva , Rena/fisiologia , Neve , Animais , Noruega , Desenvolvimento Vegetal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA