Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(32): eado8992, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110808

RESUMO

Acoustic tweezers have gained substantial interest in biology, engineering, and materials science for their label-free, precise, contactless, and programmable manipulation of small objects. However, acoustic tweezers cannot independently manipulate multiple microparticles simultaneously. This study introduces acousto-dielectric tweezers capable of independently manipulating multiple microparticles and precise control over intercellular distances and cyclical cell pairing and separation for detailed cell-cell interaction analysis. Our acousto-dielectric tweezers leverage the competition between acoustic radiation forces, generated by standing surface acoustic waves (SAWs), and dielectrophoretic (DEP) forces, induced by gradient electric fields. Modulating these fields allows for the precise positioning of individual microparticles at points where acoustic radiation and DEP forces are in equilibrium. This mechanism enables the simultaneous movement of multiple microparticles along specified paths as well as cyclical cell pairing and separation. We anticipate our acousto-dielectric tweezers to have enormous potential in colloidal assembly, cell-cell interaction studies, disease diagnostics, and tissue engineering.


Assuntos
Pinças Ópticas , Acústica , Humanos
2.
Langmuir ; 40(28): 14233-14244, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38957947

RESUMO

Hydrogel microspheres are biocompatible materials widely used in biological and medical fields. Emulsification and stirring are the commonly used methods to prepare hydrogels. However, the size distribution is considerably wide, the monodispersity and the mechanical intensity are poor, and the stable operation conditions are comparatively narrow to meet some sophisticated applications. In this paper, a T-shaped stepwise microchannel combined with a simple side microchannel structure is developed to explore the liquid-liquid dispersion mechanism, interfacial evolution behavior, satellite droplet formation mechanism and separation, and the eventual successful synthesis of dextran hydrogel microspheres. The effect of the operation parameters on droplet and microsphere size is comprehensively studied. The flow pattern and the stable operation condition range are given, and mathematical prediction models are developed under three different flow regimes for droplet size prediction. Based on the stable operating conditions, a microdroplet-based method combined with UV light curing is developed to synthesize the dextran hydrogel microsphere. The highly uniform and monodispersed dextran microspheres with good mechanical intensity are synthesized in the developed microfluidic platform. The size of the microsphere could be tuned from 50 to 300 µm with a capillary number in the range of 0.006-0.742. This work not only provides a facile method for functional polymeric microsphere preparation but also offers important design guidelines for the development of a robust microreactor.

3.
J Colloid Interface Sci ; 673: 426-433, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38878376

RESUMO

SERS measurements for monitoring bactericides in dairy products are highly desired for food safety problems. However, the complicated preparation process of SERS substrates greatly impedes the promotion of SERS. Here, we propose acoustofluidic one-step synthesis of Ag nanoparticles on paper substrates for SERS detection. Our method is economical, fast, simple, and eco-friendly. We adopted laser cutting to cut out appropriate paper shapes, and aldehydes were simultaneously produced at the cutting edge in the pyrolysis of cellulose by laser which were leveraged as the reducing reagent. In the synthesis, only 5 µL of Ag precursor was added to complete the reaction, and no reducing agent was used. Our recently developed acoustofluidic device was employed to intensely mix Ag+ ions and aldehydes and spread the reduced Ag nanoparticles over the substrate. The SERS substrate was fabricated in 1 step and 3 min. The standard R6G solution measurement demonstrated the excellent signal and prominent uniformity of the fabricated SERS substrates. SERS detection of the safe concentration of three bactericides, including tetracycline hydrochloride, thiabendazole, and malachite green, from food samples can be achieved using fabricated substrates. We take the least cost, time, reagents, and steps to fabricate the SERS substrate with satisfying performance. Our work has an extraodinary meaning for the green preparation and large-scale application of SERS.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Papel , Prata , Análise Espectral Raman , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/análise , Propriedades de Superfície , Tetraciclina/análise , Corantes de Rosanilina/análise , Corantes de Rosanilina/química , Tiabendazol/análise , Tamanho da Partícula
4.
Lab Chip ; 24(12): 3149-3157, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38787691

RESUMO

Manipulating objects with acoustics has been developed for hundreds of years since Chladni patterns in gaseous environments were exhibited. In recent decades, acoustic manipulation in microfluidics, known as acoustofluidics, has rapidly thrived and many sophisticated technologies were born. However, the basic background motion of particles under acoustic excitation is usually neglected and the classical Chladni patterns haven't been reproduced in an aqueous environment. In this study, we investigated the basic mechanism and the motion of suspended particles and sinking particles in a plain microchamber under low-frequency excitation (3-5 kHz). The mechanisms were clearly distinguished by comparing the differences among colored fluids, suspended particles, and sinking particles. The suspended particles rotated around the antinode with a speed up to 55.1 µm s-1 at 100 Vpp by the acoustic streaming and they approached each other by the secondary acoustic radiation force. The sinking particles concentrated at the node with a speed up to 22.3 µm s-1 at 100 Vpp by bouncing on the vibrating surface and the primary acoustic radiation force. We have reproduced the classical standard/inverse Chladni patterns in an aqueous environment for the first time, and they were leveraged to separate SiO2 particles with different sizes. The big particles with an average diameter of 9.68 µm were concentrated at the node while the small particles with an average diameter of 2.72 µm were collected at the antinode within 2 min. These results not only provide insightful perspectives of basic mechanisms, but also open up new possibilities for advanced acoustic tweezers.

5.
J Phys D Appl Phys ; 57(30)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38800708

RESUMO

Surface acoustic wave (SAW)-enabled acoustofluidic technologies have recently atttracted increasing attention for applications in biology, chemistry, biophysics, and medicine. Most SAW acoustofluidic devices generate acoustic energy which is then transmitted into custom microfabricated polymer-based channels. There are limited studies on delivering this acoustic energy into convenient commercially-available glass tubes for manipulating particles and fluids. Herein, we have constructed a capillary-based SAW acoustofluidic device for multifunctional fluidic and particle manipulation. This device integrates a converging interdigitated transducer to generate focused SAWs on a piezoelectric chip, as well as a glass capillary that transports particles and fluids. To understand the actuation mechanisms underlying this device, we performed finite element simulations by considering piezoelectric, solid mechanic, and pressure acoustic physics. This experimental study shows that the capillary-based SAW acoustofluidic device can perform multiple functions including enriching particles, patterning particles, transporting particles and fluids, as well as generating droplets with controlled sizes. Given the usefulness of these functions, we expect that this acoustofluidic device can be useful in applications such as pharmaceutical manufacturing, biofabrication, and bioanalysis.

6.
Small Methods ; 8(8): e2301406, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594964

RESUMO

Compared with the conventional emulsification method, droplets generated within microfluidic devices exhibit distinct advantages such as precise control of fluids, exceptional monodispersity, uniform morphology, flexible manipulation, and narrow size distribution. These inherent benefits, including intrinsic safety, excellent heat and mass transfer capabilities, and large surface-to-volume ratio, have led to the widespread applications of droplet-based microfluidics across diverse fields, encompassing chemical engineering, particle synthesis, biological detection, diagnostics, emulsion preparation, and pharmaceuticals. However, despite its promising potential for versatile applications, the practical utilization of this technology in commercial and industrial is extremely limited to the inherently low production rates achievable within a single microchannel. Over the past two decades, droplet-based microfluidics has evolved significantly, considerably transitioning from a proof-of-concept stage to industrialization. And now there is a growing trend towards translating academic research into commercial and industrial applications, primarily driven by the burgeoning demands of various fields. This paper comprehensively reviews recent advancements in droplet-based microfluidics, covering the fundamental working principles and the critical aspect of scale-up integration from working principles to scale-up integration. Based on the existing scale-up strategies, the paper also outlines the future research directions, identifies the potential opportunities, and addresses the typical unsolved challenges.

7.
Anal Chem ; 96(1): 496-504, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153375

RESUMO

Microfluidic paper-based analytical devices (µPADs) feature an economic and sensitive nature, while acoustofluidics displays contactless and versatile virtue, and both of them gained tremendous interest in the past decades. Integrating µPADs with acoustofluidic techniques provides great potential to overcome the inherent shortcomings and make appealing achievements. Here, we present acoustofluidics-assisted multifunctional paper-based analytical devices that leverage bulk acoustic waves to realize multiple applications on paper substrates, including uniform colorimetric detection, microparticle/cell enrichment, fluorescence amplification, homogeneous mixing, and nanomaterial synthesis. The glucose detection in the range of 5-15 mM was conducted to perform uniform colorimetric detection. Various types (brass powder, copper powder, diamond powder, and yeast cells) and sizes (5-200 µm) of solid particles and biological cells can be enriched on paper in a few seconds or minutes; thus, fluorescence amplification by 3 times was realized with the enrichment. The high-throughput and homogeneous mixing of two fluids can be achieved, and based on the mixing, nanomaterials (ZnO nanosheets) were synthesized on paper. We analyzed the underlying mechanisms of these applications in the devices, which are attributed to Faraday waves and Chladni patterns. With their simple fabrication and prominent effectiveness, the devices open up new possibilities for paper-based microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...