Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Nanoscale ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39224054

RESUMO

Controlling the random lasing action from disordered media is important to obtain customizable lasers with unprecedented properties. In this paper, systematic investigations of random scattering based on GaAs/AlGaAs axial heterostructure nanowire (NW) arrays are presented. By manipulating the diameter and density of GaAs/AlGaAs axial heterostructure NWs during growth, different types of random lasers (Anderson localized and delocalized random lasers) have been successfully realized. The threshold, Q factor, and spatial coherence of these two types of lasers are experimentally discussed and analyzed. Finally, a proof-of-concept demonstration of speckle-free imaging based on the NW lasers has been conducted. This research enables the tunability of random lasers with exceptional performance and lays the foundation for achieving random lasing control.

2.
Opt Lett ; 49(17): 4859-4862, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207982

RESUMO

We present a single-shot intensity diffraction tomography method via polarization-multiplexed LED illumination. Three LED elements covered with 0°, 45°, and 135° linear polarizers, respectively, are lit up simultaneously to illuminate the sample with illumination angles matching the numerical aperture of the objective. The scattering field of the sample is recorded on a single intensity image with a polarization sensor, and three intensity images corresponding to the three LED elements are decoupled from the intensity image by using a pre-calibrated intensity transform matrix. After a slice-wise deconvolution procedure, the 3D complex refractive index distribution of the sample can be recovered. To demonstrate the performance of our method, we perform experiments on a USAF absorption resolution target, rat hippocampal cell lines, and spongy spicule. These imaging results show that our method can achieve 3D tomography for various biomedical samples with a near incoherent diffraction-limited lateral resolution of 690 nm and an axial resolution of 4.68 µm.

3.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39205046

RESUMO

Large field-of-view images are increasingly used in various environments today, and image stitching technology can make up for the limited field of view caused by hardware design. However, previous methods are constrained in various environments. In this paper, we propose a method that combines the powerful feature extraction capabilities of the Superpoint algorithm and the exact feature matching capabilities of the Lightglue algorithm with the image fusion algorithm of Unsupervised Deep Image Stitching (UDIS). Our proposed method effectively improves the situation where the linear structure is distorted and the resolution is low in the stitching results of the UDIS algorithm. On this basis, we make up for the shortcomings of the UDIS fusion algorithm. For stitching fractures of UDIS in some complex situations, we optimize the loss function of UDIS. We use a second-order differential Laplacian operator to replace the difference in the horizontal and vertical directions to emphasize the continuity of the structural edges during training. Combined with the above improvements, the Super Unsupervised Deep Image Stitching (SuperUDIS) algorithm is finally formed. SuperUDIS has better performance in both qualitative and quantitative evaluations compared to the UDIS algorithm, with the PSNR index increasing by 0.5 on average and the SSIM index increasing by 0.02 on average. Moreover, the proposed method is more robust in complex environments with large color differences or multi-linear structures.

4.
ACS Appl Mater Interfaces ; 16(31): 41677-41683, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39069675

RESUMO

Room-temperature lasing based on low-dimensional GaAs nanowires (NWs) is one of the most critical and challenging issues in realizing near-infrared lasers for nanophotonics. In this article, the random lasing characteristics based on GaAs NW arrays have been discussed theoretically. According to the simulation, GaAs/AlGaAs core-shell NWs with an optimal diameter, density, and Al content in the shell have been grown. Systematic morphological and optical characterizations were carried out. It is found that the GaAs NWs with the additional growth of the AlGaAs shell exhibit improved emission by about 2 orders of magnitude at low temperatures, which can be attributed to the suppression of crystal defects. At room temperature, lasing was observed with a threshold around 70.16 mW/cm2, and the random lasing mechanism was discussed in detail. This work is of great significance for the design of random cavities based on semiconductor NWs, which is important for optoelectronic integration.

5.
Materials (Basel) ; 17(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063842

RESUMO

Metal halide perovskites have shown unique advantages compared with traditional optoelectronic materials. Currently, perovskite films are commonly produced by either multi-step spin coating or vapor deposition techniques. However, both methods face challenges regarding large-scale production. Herein, we propose a straightforward in situ growth method for the fabrication of CsPbBr3 nanocrystal films. The films cover an area over 5.5 cm × 5.5 cm, with precise thickness control of a few microns and decent uniformity. Moreover, we demonstrate that the incorporation of magnesium ions into the perovskite enhances crystallization and effectively passivates surface defects, thereby further enhancing luminous efficiency. By integrating this approach with a silicon photodiode detector, we observe an increase in responsivity from 1.68 × 10-2 A/W to 3.72 × 10-2 A/W at a 365 nm ultraviolet wavelength.

6.
Biomimetics (Basel) ; 9(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921254

RESUMO

The compound eye is a natural multi-aperture optical imaging system. In this paper, a continuous optical zoom compound eye imaging system based on Alvarez lenses is proposed. The main optical imaging part of the proposed system consists of a curved Alvarez lens array (CALA) and two Alvarez lenses. The movement of the CALA and two Alvarez lenses perpendicular to the optical axis is realized by the actuation of the dielectric elastomers (DEs). By adjusting the focal length of the CALA and the two Alvarez lenses, the proposed system can realize continuous zoom imaging without any mechanical movement vertically to the optical axis. The experimental results show that the paraxial magnification of the target can range from ∼0.30× to ∼0.9×. The overall dimensions of the optical imaging part are 54 mm × 36 mm ×60 mm (L × W × H). The response time is 180 ms. The imaging resolution can reach up to 50 lp/mm during the optical zoom process. The proposed continuous optical zoom compound eye imaging system has potential applications in various fields, including large field of view imaging, medical diagnostics, machine vision, and distance detection.

7.
Opt Express ; 32(11): 20066-20079, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859124

RESUMO

In the field of machine vision, depth segmentation plays a crucial role in dividing targets into different regions based on abrupt changes in depth. Phase-shifting depth segmentation is a technique that extracts singular points to form segmentation lines by leveraging the phase-shifting invariance of singular points in different wrapped phase maps. This makes it immune to color, texture, and camera exposure. However, current phase-shifting depth segmentation techniques face challenges in the precision of segmentation. To overcome this issue, this paper proposes a singular points extraction technique by constructing a more comprehensive threshold with the help of the minimum period of the phase map. Taking full advantage of the proposed technique, mean-value points and order singular points are accurately filtered out, and the integrity of segmentation lines in high-curvature regions can be guaranteed. During optimization processing, the precision of segmentation is improved by employing a low-cost morphology-based optimization model. Simulation results demonstrate the segmentation accuracy reaches up to 98.58% even in a noisy condition. Experimental results on different objects indicate that the proposed method exhibits good generalization and robustness.

8.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893735

RESUMO

Colloidal quantum dots (CQDs) have unique advantages in the wide tunability of visible-to-infrared emission wavelength and low-cost solution processibility [...].

9.
Light Sci Appl ; 13(1): 89, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609412

RESUMO

Colloidal quantum dots (CQDs) are of interest for optoelectronic devices because of the possibility of high-throughput solution processing and the wide energy gap tunability from ultraviolet to infrared wavelengths. People may question about the upper limit on the CQD wavelength region. To date, although the CQD absorption already reaches terahertz, the practical photodetection wavelength is limited within mid-wave infrared. To figure out challenges on CQD photoresponse in longer wavelength, would reveal the ultimate property on these nanomaterials. What's more, it motivates interest in bottom-up infrared photodetection with less than 10% cost compared with epitaxial growth semiconductor bulk. In this work, developing a re-growth method and ionic doping modification, we demonstrate photodetection up to 18 µm wavelength on HgTe CQD. At liquid nitrogen temperature, the responsivity reaches 0.3 A/W and 0.13 A/W, with specific detectivity 6.6 × 108 Jones and 2.3 × 109 Jones for 18 µm and 10 µm CQD photoconductors, respectively. This work is a step toward answering the general question on the CQD photodetection wavelength limitation.

10.
Opt Express ; 32(4): 6684-6699, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439366

RESUMO

Topographic measurements of micro- or nanostructures are essential in cutting-edge scientific disciplines such as optical communications, metrology, and structural biology. Despite the advances in surface metrology, measuring micron-scale steps with wide field of view (FOV) and high-resolution remains difficult. This study demonstrates a dual-wavelength Fourier ptychographic microscopy for high-resolution topographic measurement across a wide FOV using an aperture scanning structure. This structure enables the capture of a three-dimensional (3D) sample's scattered field with two different wavelength lasers, thus allowing the axial measurement range growing from nano- to micro-scale with enhanced lateral resolution. To suppress the unavoidable noises and artifacts caused by temporal coherence, system vibration, etc., a total variation (TV) regularization algorithm is introduced for phase retrieval. A blazed grating with micron-scale steps is used as the sample to validate the performance of our method. The agreement between the high-resolution reconstructed topography with our method and that with atomic force microscopy verified the effectiveness. Meanwhile, numerical simulations suggest that the method has the potential to characterize samples with high aspect-ratio steps.

11.
Opt Express ; 32(5): 7119-7135, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439401

RESUMO

Ghost imaging (GI) has been widely used in the applications including spectral imaging, 3D imaging, and other fields due to its advantages of broad spectrum and anti-interference. Nevertheless, the restricted sampling efficiency of ghost imaging has impeded its extensive application. In this work, we propose a novel foveated pattern affine transformer method based on deep learning for efficient GI. This method enables adaptive selection of the region of interest (ROI) by combining the proposed retina affine transformer (RAT) network with minimal computational and parametric quantities with the foveated speckle pattern. For single-target and multi-target scenarios, we propose RAT and RNN-RAT (recurrent neural network), respectively. The RAT network enables an adaptive alteration of the fovea of the variable foveated patterns spot to different sizes and positions of the target by predicting the affine matrix with a minor number of parameters for efficient GI. In addition, we integrate a recurrent neural network into the proposed RAT to form an RNN-RAT model, which is capable of performing multi-target ROI detection. Simulations and experimental results show that the method can achieve ROI localization and pattern generation in 0.358 ms, which is a 1 × 105 efficiency improvement compared with the previous methods and improving the image quality of ROI by more than 4 dB. This approach not only improves its overall applicability but also enhances the reconstruction quality of ROI. This creates additional opportunities for real-time GI.

12.
Biomed Opt Express ; 15(2): 672-686, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404332

RESUMO

Fourier ptychographic microscopy (FPM) has emerged as a new wide-field and high-resolution computational imaging technique in recent years. To ensure data redundancy for a stable convergence solution, conventional FPM requires dozens or hundreds of raw images, increasing the time cost for both data collection and computation. Here, we propose a single-shot Fourier ptychographic microscopy with isotropic lateral resolution via polarization-multiplexed LED illumination, termed SIFPM. Three LED elements covered with 0°/45°/135° polarization films, respectively, are used to provide numerical aperture-matched illumination for the sample simultaneously. Meanwhile, a polarization camera is utilized to record the light field distribution transmitted through the sample. Based on weak object transfer functions, we first obtain the amplitude and phase estimations of the sample by deconvolution, and then we use them as the initial guesses of the FPM algorithm to refine the accuracy of reconstruction. We validate the complex sample imaging performance of the proposed method on quantitative phase target, unstained and stained bio-samples. These results show that SIFPM can realize quantitative imaging for general samples with the resolution of the incoherent diffraction limit, permitting high-speed quantitative characterization for cells and tissues.

13.
Opt Express ; 32(2): 1246-1256, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297680

RESUMO

Optical zoom is an essential function for many imaging systems including consumer electronics, biomedical microscopes, telescopes, and projectors. However, most optical zoom imaging systems have discrete zoom rates or narrow zoom ranges. In this work, a continuous optical zoom imaging system with a wide zoom range is proposed. It consists of a solid lens, two Alvarez lenses, and a camera with an objective. Each Alvarez lens is composed of two cubic phase plates, which have inverted freeform surfaces concerning each other. The movement of the cubic phase masks perpendicular to the optical axis is realized by the actuation of the dielectric elastomer. By applying actuation voltages to the dielectric elastomer, cubic phase masks are moved laterally and then the focal lengths of the two Alvarez lenses are changed. By adjusting the focal lengths of these two Alvarez lenses, the optical magnification is tuned. The proposed continuous optical zoom imaging system is built and the validity is verified by the experiments. The experimental results demonstrate that the zoom ratio is up to 10×, i.e., the magnification continuously changes from 1.58× to 15.80× when the lateral displacements of the cubic phase masks are about 1.0 mm. The rise and fall response times are 150 ms and 210 ms, respectively. The imaging resolution can reach 114 lp/mm during the optical zoom process. The proposed continuous optical imaging system is expected to be used in the fields of microscopy, biomedicine, virtual reality, etc.

14.
Opt Express ; 32(2): 2418-2431, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297772

RESUMO

Instantaneous phase shifting interferometry technology, the core component of which is the pixel micropolarizer camera, has been widely used in commercial interferometers. This technology has the superiority of single-frame acquisition, vibration insensitivity, and no need for phase shifting devices. However, due to manufacturing defects and accuracy limitations, the extinction ratios (ER) of the micropolarizer array are different and fairly small, directly affecting the phase calculation accuracy. This paper initially derives a theoretical expression for the phase calculation error introduced by the extinction ratio (ER) and proposes the error correction model to reduce phase calculation errors caused by the extinction ratio. The theoretical analysis can serve as an important basis for accurately assessing the polarization characteristics of a pixel micropolarizer camera. Quantifying the impact of the extinction ratios provides significant support for the selection of polarization equipment. In addition, the paper proposes a calibration model to improve measurement accuracy, which can serve as an effective means to reduce the impact of the extinction ratio (ER). The innovative research content revealed the influence of extinction ratio (ER), serving as a valuable complement to the existing analysis and research on extinction ratio (ER).

15.
Biomimetics (Basel) ; 9(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248623

RESUMO

This paper presents a monocular biological microscope with colorful 3D reconstruction and an extended depth of field using an electrically tunable lens. It is based on a 4f optical system with an electrically tunable lens at the confocal plane. Rapid and extensive depth scanning while maintaining consistent magnification without mechanical movement is achieved. We propose an improved Laplacian operator that considers pixels in diagonal directions to provide enhanced fusion effects and obtain more details of the object. Accurate 3D reconstruction is achieved using the shape-from-focus method by tuning the focal power of the electrically tunable lens. We validate the proposed method by performing experiments on biological samples. The 3D reconstructed images obtained from the biological samples match the actual shrimp larvae and bee antenna samples. Two standard gauge blocks are used to evaluate the 3D reconstruction performance of the proposed method. The experimental results show that the extended depth of fields are 120 µm, 240 µm, and 1440 µm for shrimp larvae, bee tentacle samples, and gauge blocks, respectively. The maximum absolute errors are -39.9 µm and -30.6 µm for the first and second gauge blocks, which indicates 3D reconstruction deviations are 0.78% and 1.52%, respectively. Since the procedure does not require any custom hardware, it can be used to transform a biological microscope into one that effectively extends the depth of field and achieves highly accurate 3D reconstruction results, as long as the requirements are met. Such a microscope presents a broad range of applications, such as biological detection and microbiological diagnosis, where colorful 3D reconstruction and an extended depth of field are critical.

16.
Opt Express ; 32(1): 62-78, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175063

RESUMO

The Ritchey-Common test is widely adopted to measure large optical flats. The traditional Ritchey-Common test eliminates the defocus error with multiple tests by changing the position of the mirrors, which suffers from cumbersome steps, poor repeatability, coupled system error, extra mirror deformation, and potential overturning. The above problems increase the test time, decrease the reliability and accuracy, increase the test cost, and threaten manufacturing safety. We propose a single-test Ritchey-Common interferometry to avoid the obligatory position change in the traditional method. A sub-aperture of test flat is directly measured by a small-aperture interferometer before the test, which is easy to implement, to replace the extra system wavefront measurement in different positions. The defocus is calculated in sub-aperture at exactly the same position as the full-field measurement without the position change, then the surface form under test can be obtained with accurate optical path modeling. Measurement experiments for 100 mm and 2050 mm aperture flats were performed to demonstrate the feasibility of this method. Compared with a direct test in a standard Zygo interferometer, the peak to valley (PV) and root mean square (RMS) errors were 0.0889 λ and 0.0126 λ (λ=632.8 nm), respectively, which reaches the upper limit of accuracy of the interferometer. To the best of our knowledge, this is the first proposal of the Ritchey-Common test that can eliminate the defocus error and realize high accuracy measurement in a single test. Our work paves the way for reliable and practical optical metrology for large optical flats.

17.
Appl Opt ; 63(3): 585-594, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294368

RESUMO

For the high-precision fabrication of a continuous phase plate (CPP), a combined decoupling algorithm of single-step decoupling based on the Clairaut-Schwarz theorem and global decoupling by stagewise iteration is proposed. It attempts to address the problem of the low accuracy and limitation of the existing slope-based figuring (SF) model in two-dimensional applications caused by the vector removal coupling between the tool slope influence function and the material removal slope due to the inherent convolution effect in the SF model. The shortcomings of CPP interferometry and the application bottleneck of the Hartmann test in traditional height-based figuring model are studied. The generation mechanism of vector removal coupling is analyzed and compensated. A CPP of 85m m×85m m was successfully machined by the decoupled slope-based figuring model, and the root mean square (RMS) of the surface height error accounted for 6.01% of the RMS of the design value. The research results can effectively improve the convergence and certainty of CPP fabrication using the slope-based figuring model.

18.
J Hazard Mater ; 465: 133081, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016321

RESUMO

A large number of natural and anthropogenic wastes were landfilled, and dissolved organic matter (DOM) were formed during landfill. However, the composition, transformation, and coexistence characteristics of natural and anthropogenic DOM in leachate remain unclear. Fourier transform ion cyclotron resonance mass spectrometry, size exclusion chromatography, gas chromatography coupled with mass spectrometry, and three-dimensional excitation-emission matrix spectrum were employed to clarify comprehensively the abovementioned question. The results showed that natural DOM in young leachate constituted mainly straight-chain organic acids, protein substances, and building blocks of humic substances (BB). Straight-chain organic acids vanished in old leachates, and the concentration of protein substances and BB decreased from 44% to 26% and from 47% to 12%, respectively, while CHON and CHONS were degraded to CHO and CHOS during the process. As to anthropogenic DOM, its types and relative content in leachate increased during landfill, and aromatic acids, terpenes, halogenated organics, indoles, and phenols became the main organic components in old leachate. Compared to natural DOM, anthropogenic DOM was degraded slowly and accumulated in leachate, and some of the natural DOM facilitated the dechlorination of dichlorinated organic compounds. This study demonstrates that landfill led to an increase in humic substances and halogenated organic compounds in old leachate, which was intensified with concentrated leachate recirculation.

19.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068065

RESUMO

In recent years, mercury chalcogenide colloidal quantum dots (CQDs) have attracted widespread research interest due to their unique electronic structure and optical properties. Mercury chalcogenide CQDs demonstrate an exceptionally broad spectrum and tunable light response across the short-wave to long-wave infrared spectrum. Photodetectors based on mercury chalcogenide CQDs have attracted considerable attention due to their advantages, including solution processability, low manufacturing costs, and excellent compatibility with silicon substrates, which offers significant potential for applications in infrared detection and imaging. However, practical applications of mercury-chalcogenide-CQD-based photodetectors encounter several challenges, including material stability, morphology control, surface modification, and passivation issues. These challenges act as bottlenecks in further advancing the technology. This review article delves into three types of materials, providing detailed insights into the synthesis methods, control of physical properties, and device engineering aspects of mercury-chalcogenide-CQD-based infrared photodetectors. This systematic review aids researchers in gaining a better understanding of the current state of research and provides clear directions for future investigations.

20.
Opt Express ; 31(25): 41479-41495, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087546

RESUMO

The wireless transmission of video data mainly entails addressing the massive video stream data and ensuring the quality of image frame transmission. To reduce the amount of data and ensure an optimal data transmission rate and quality, we propose a free-space optical video transmission system that applies compressed sensing (CS) algorithms to wireless optical communication systems. Based on the Artix-7 series field programmable gate array (FPGA) chip, we completed the hardware design of the optical wireless video transceiver board; the CS image is transmitted online to the FPGA through Gigabit Ethernet, and the video data is encoded by gigabit transceiver with low power (GTP) and converted into an optical signal, which is relayed to the atmospheric turbulence simulation channel through an attenuator and a collimating mirror. After the optical signal is decoded by photoelectric conversion at the receiving end, the Camera-Link frame grabber is d; thus, the image is collected, and it is reconstructed offline. Herein, the link transmission conditions of different algorithm sampling rates, optical power at the receiving end, and atmospheric coherence length are measured. The experimental results indicate that the encrypt-then-compress (ETC) type algorithm exhibits a more optimal image compression transmission reconstruction performance, and that the 2D compressed sensing (2DCS) algorithm exhibits superior performance. Under the condition that the optical power satisfies the link connectivity, the PSNR value of the reconstructed image is 3-7 dB higher than that of the comparison algorithm. In a strong atmosphere turbulence environment, the peak signal-to-noise ratio (PSNR) of the corresponding reconstructed image under different transmission rates at the receiving end can still exceed 30 dB, ensuring the complete reconstruction of the image.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...