Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small ; : e2407238, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39439173

RESUMO

Aqueous zinc ion batteries (AZIBs) are renowned for their exceptional safety and eco-friendliness. However, they face cycling stability and reversibility challenges, particularly under high-rate conditions due to corrosion and harmful side reactions. This work introduces fumaric acid (FA) as a trace amount, suitable high-rate, multifunctional, low-cost, and environmentally friendly electrolyte additive to address these issues. FA additives serve as prioritized anchors to form water-poor Inner Helmholtz Plane on Zn anodes and adsorb chemically on Zn anode surfaces to establish a unique in situ solid-electrolyte interface. The combined mechanisms effectively inhibit dendrite growth and suppress interfacial side reactions, resulting in excellent stability of Zn anodes. Consequently, with just tiny quantities of FA, Zn anodes achieve a high Coulombic efficiency (CE) of 99.55 % and exhibit a remarkable lifespan over 2580 hours at 5 mA cm-2, 1 mAh cm-2 in Zn//Zn cells. Even under high-rate conditions (10 mA cm-2, 1 mAh cm-2), it can still run almost for 2020 hours. Additionally, the Zn//V2O5 full cell with FA retains a high specific capacity of 106.95 mAh g-1 after 2000 cycles at 5 A g-1. This work provides a novel additive for the design of electrolytes for high-rate AZIBs.

2.
Natl Sci Rev ; 11(9): nwae254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184135

RESUMO

Ni-rich LiNi x Co y Mn z O2 (NCMxyz, x + y + z = 1, x ≥ 0.8) layered oxide materials are considered the main cathode materials for high-energy-density Li-ion batteries. However, the endless cracking of polycrystalline NCM materials caused by stress accelerates the loss of active materials and electrolyte decomposition, limiting the cycle life. Hence, understanding the chemo-mechanical evolution during (de)lithiation of NCM materials is crucial to performance improvement. In this work, an optical fiber with µÎµ resolution is designed to in operando detect the stress evolution of a polycrystalline LiNi0.8Co0.1Mn0.1O2 (P-NCM811) cathode during cycling. By integrating the sensor inside the cathode, the stress variation of P-NCM811 is completely transferred to the optical fiber. We find that the anisotropy of primary particles leads to the appearance of structural stress, inducing the formation of microcracks in polycrystalline particles, which is the main reason for capacity decay. The isotropy of primary particles reduces the structural stress of polycrystalline particles, eliminating the generation of microcracks. Accordingly, the P-NCM811 with an ordered arrangement structure delivered high electrochemical performance with capacity retention of 82% over 500 cycles. This work provides a brand-new perspective with regard to understanding the operando chemo-mechanical evolution of NCM materials during battery operation, and guides the design of electrode materials for rechargeable batteries.

3.
ACS Appl Mater Interfaces ; 16(28): 36281-36288, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949968

RESUMO

Superionic halides have attracted widespread attention as solid electrolytes due to their excellent ionic conductivity, soft texture, and stability toward high-voltage electrode materials. Among them, Li3InCl6 has aroused interest since it can be easily synthesized in water or ethanol. However, investigations into the influence of solvents on both the crystal structure and properties remain unexplored. In this work, Li3InCl6 is synthesized by three different solvents: water, ethanol, and water-ethanol mixture, and the difference in properties has been studied. The results show that the product obtained by the ethanol solvent demonstrates the largest unit cell parameters with more vacancies, which tend to crystallize on the (131) plane and provide the 3D isotropic network migration for lithium-ions. Thus, it exhibits the highest ionic conductivity (1.06 mS cm-1) at room temperature and the lowest binding energy (0.272 eV). The assembled all-solid-state lithium metal batteries (ASSLMBs) employing Li3InCl6 electrolytes demonstrate a high initial discharge capacity of 153.9 mA h g-1 at 0.1 C (1 C = 170 mA h g-1) and the reversible capacity retention rate can reach 82.83% after 50 cycles. This work studies the difference in ionic conductivity between Li3InCl6 electrolytes synthesized by different solvents, which can provide a reference for the future synthesis of halide electrolytes and enable their practical application in halide-based ASSLMBs with a high energy density.

4.
PLoS One ; 19(6): e0305346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861565

RESUMO

"Exercise is the best medicine" is well known, but the optimal dose of physical activity (PA) for males and females across different age groups is still unknown. This study, using data from the four waves of CHARLS, aimed to determine the optimal PA dose that reduces frailty risks among older adults across various age groups and both sexes. We created a frailty index score using 63 health-related variables and used 0.21 as the frailty cut point. Binary logistic regression was used to compare the effect of vigorous, moderate, and light intensity PA under IPAQ criteria on frailty risk. The study found that regardless of whether males or females, the optimal effect of vigorous-intensity PA in reducing the risk of frailty is consistently observed throughout the entire old age career. Moreover, the age groups at which moderate-intensity PA reduces the risk of frailty were from age 70 for males and from age 80 for females. And light-intensity PA had no effect on reducing the risk of frailty. Moderate and vigorous intensity of PA in older adults should be promoted, but guidelines and recommendations must account for optimal associations with PA dose across genders and age groups.


Assuntos
Exercício Físico , Fragilidade , Humanos , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , China/epidemiologia , Fragilidade/prevenção & controle , Fragilidade/epidemiologia , Estudos Longitudinais , Pessoa de Meia-Idade , Fatores Etários , Fatores Sexuais , Idoso Fragilizado , Fatores de Risco , Aposentadoria
5.
Chem Commun (Camb) ; 59(66): 9980-9983, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503825

RESUMO

The mechanical properties of de-lithiated single-crystal Ni-rich cathodes are causing extensive concern. Here, we first show that the compression hardness of single crystal Ni-rich cathode particles decreases significantly at highly de-lithiated states by micro-compression testing. Thus, phase-boundary hardening was introduced to inhibit the planar gliding, resulting in excellent electrochemical performance.

6.
Nanoscale ; 13(47): 20213-20224, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34850803

RESUMO

The structural collapse and surface chemical degradation of nickel-rich layered oxide cathodes (NCM) of lithium-ion batteries during operation, which result in severe capacity attenuation, are the major challenges that hinder their commercial development. To improve the cycle and rate performances of LiNi0.8Co0.1Mn0.1O2 (NCM811), in this study, we have constructed a double-shell structure protective layer with a surface CeO2-x coating and interfacial spinel-like phase, which mitigate particle microcrack formation and isolate the NCM811 particles from electrolyte erosion. Additionally, during heat-treatment calcination, tetravalent cerium ions with strong oxidation ability can be partially doped into the material, which causes partial oxidation of Ni2+ to Ni3+, thereby reducing the Li+/Ni2+ mixing. The strong Ce-O bonds formed in the lattice help to improve the stability of the structure in the highly de-lithiated state. Thus, the synergy of multifunctional cerium modification effectively improves the structural stability and electrochemical kinetics of the material during cycling. Impressively, the obtained Ce-NCM811 exhibits capacity retention of 80.3% at a high discharge rate of 8 C after 500 cycles, which is much higher than that of the pristine cathode (only 44.3%). This work successfully designed a material with multi-functional Ce modification to provide a basis for Ni-rich cathode materials, which is crucial as it effectively improves the electrochemical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...