Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Yi Chuan ; 46(9): 727-736, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275872

RESUMO

Asteraceae is a large class of eudicots with complex capitulum, and little is known regarding the molecular regulation mechanism of flower development. APETALA1(AP1) belongs to the MADS-box gene family and plays a key role in plant floral induction and floral organ development. In this study, the bioinformatics and tissue-specific expression of AP1 homologous gene SvAP1-5 in Senecio vulgaris were analyzed. Based on VIGS technology, SvAP1-5 gene silencing plants were created, and SvAP1-5 was overexpressed in Solanum nigrum. The results of bioinformatics analysis showed that SvAP1-5 gene had typical MADS-box and K-box structure, and contains FUL motif and paleoAP1 motif at the C-terminal. SvAP1-5 belongs to the euFUL branch of AP1 gene. qRT-PCR results showed that SvAP1-5 was expressed in bracts, petals and carpels, and was highly expressed in carpels. Compared with the control group, SvAP1-5 gene silencing resulted in irregular petal dehiscence, increased stigma division, and carpel dysplasia. The fruit development of SvAP1-5 overexpressing S.nigrum plants was abnormal, and the hyperplastic tissue similar to fruit appeared. In summary, SvAP1-5 gene may be involved in the development of petals and carpels and plays an important role during the development of S.vulgaris.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Proteínas de Plantas , Senécio , Flores/genética , Flores/crescimento & desenvolvimento , Senécio/genética , Senécio/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Inativação Gênica
2.
Yi Chuan ; 45(6): 526-535, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340966

RESUMO

MYB is one of the largest transcription factor families in plants. Among them, the R3-MYB transcription factor RADIALIS (RAD) plays a very important role in the flowers development in Antirrhinum majus. In this study, a R3-MYB gene similar to RAD was found by analyzing the genome of A. majus, which was named AmRADIALIS-like 1 (AmRADL1). The gene function was predicted through bioinformatics. The relative expression levels in different tissues and organs of wild-type A. majus were analyzed by qRT-PCR. AmRADL1 was overexpressed in A. majus, and the transgenic plants were analyzed by morphological observation and histological staining. The results showed that the open reading frame (ORF) of AmRADL1 gene was 306 bp in length, encoding 101 amino acids. It has typical SANT domain, and the C-terminal contains a CREB motif, which was highly homologous to tomato SlFSM1. The results of qRT-PCR showed that AmRADL1 was expressed in roots, stems, leaves and flowers, and the expression level was higher in flowers. Further analysis of its expression in different floral organs showed that AmRADL1 had the highest expression in carpel. The results of histological staining analysis of the transgenic plants showed that compared with the wild type, although the size of the carpel cells of the transgenic plants did not change significantly, the placenta area in the carpel became smaller and the number of cell decreased. In summary, AmRADL1 may be involved in the regulation of carpel development, but the specific mechanism of action in carpel remains to be further studied.


Assuntos
Antirrhinum , Antirrhinum/genética , Antirrhinum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/genética , Flores/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
3.
Ther Adv Chronic Dis ; 13: 20406223221107848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813190

RESUMO

Background: The impact of thyroid hormones within their normal ranges on skeletal muscle and bone in patients with type 2 diabetes mellitus (T2DM) remains unknown. The purpose of this study was to investigate the relationships of thyroid hormones with muscle and bone in euthyroid patients with T2DM. Methods: This cross-sectional study included 344 euthyroid T2DM patients. Muscle mass and bone mineral density were measured by dual-energy X-ray absorptiometry. The levels of thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxin (FT4) were measured by electrochemiluminescence immunoassay. Results: The results revealed that FT3 was positively correlated with body mass index (BMI) in male patients after age correction. In men, FT4 was negatively correlated with body weight, BMI, total muscle mass, appendicular skeletal muscle mass (ASM), and ASM index (ASMI), while FT3/FT4 was positively correlated with body weight, BMI, total muscle mass, ASM, and ASMI after age correction. In women, FT4 was negatively correlated with ASM and ASMI, while FT3/FT4 was positively correlated with ASM and ASMI after age correction. FT3/FT4 was significantly lower in men with low muscle mass than in those with normal muscle mass. The age-adjusted odds for incident low muscle mass comparing the lowest and highest FT3/FT4 increased in men. Conclusions: FT3/FT4 was positively correlated with ASM and ASMI in both men and women. Therefore, FT3/FT4 may be a parameter indicative of low muscle mass in euthyroid men with T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...