Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 698551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336686

RESUMO

INTRODUCTION: Circulating tumor cells (CTCs) and cell-free tumor DNA (ctDNA) are tumor components present in circulation. Due to the limited access to both CTC enrichment platforms and ctDNA sequencing in most laboratories, they are rarely analyzed together. METHODS: Concurrent isolation of ctDNA and single CTCs were isolated from lung cancer and breast cancer patients using the combination of size-based and CD45-negative selection method via DropCell platform. We performed targeted amplicon sequencing to evaluate the genomic heterogeneity of CTCs and ctDNA in lung cancer and breast cancer patients. RESULTS: Higher degrees of genomic heterogeneity were observed in CTCs as compared to ctDNA. Several shared alterations present in CTCs and ctDNA were undetected in the primary tumor, highlighting the intra-tumoral heterogeneity of tumor components that were shed into systemic circulation. Accordingly, CTCs and ctDNA displayed higher degree of concordance with the metastatic tumor than the primary tumor. The alterations detected in circulation correlated with worse survival outcome for both lung and breast cancer patients emphasizing the impact of the metastatic phenotype. Notably, evolving genetic signatures were detected in the CTCs and ctDNA samples during the course of treatment and disease progression. CONCLUSIONS: A standardized sample processing and data analysis workflow for concurrent analysis of CTCs and ctDNA successfully dissected the heterogeneity of metastatic tumor in circulation as well as the progressive genomic changes that may potentially guide the selection of appropriate therapy against evolving tumor clonality.

2.
Clin Chem ; 65(2): 272-281, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523199

RESUMO

BACKGROUND: The comeasurement of both genomic and transcriptomic signatures in single cells is of fundamental importance to accurately assess how the genetic information correlates with the transcriptomic phenotype. However, existing technologies have low throughput and laborious work flows. METHODS: We developed a new method for concurrent sequencing of the transcriptome and targeted genomic regions (CORTAD-seq) within the same single cell on an automated microfluidic platform. The method was compatible with the downstream library preparation, allowing easy integration into existing next-generation sequencing work flows. We incorporated a single-cell bioinformatics pipeline for transcriptome and mutation analysis. RESULTS: As proof of principle, we applied CORTAD-seq to lung cancer cell lines to dissect the cellular consequences of mutations that result in resistance to targeted therapy. We obtained a mean detection of 6000 expressed genes and an exonic rate of 50%. The targeted DNA-sequencing data achieved a 97.8% detection rate for mutations and allowed for the identification of copy number variations and haplotype construction. We detected expression signatures of tyrosine kinase inhibitor (TKI) resistance, epidermal growth factor receptor (EGFR) amplification, and expansion of the T790M mutation among resistant cells. We also identified characteristics for TKI resistance that were independent of EGFR T790M, indicating that other alterations are required for resistance in this context. CONCLUSIONS: CORTAD-seq allows assessment of the interconnection between genetic and transcriptomic changes in single cells. It is operated on an automated, commercially available single-cell isolation platform, making its implementation straightforward.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/química , Análise de Sequência de DNA/métodos , Automação , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Biblioteca Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microfluídica , Inibidores de Proteínas Quinases/uso terapêutico , RNA/metabolismo , Análise de Célula Única , Transcriptoma
3.
BMC Bioinformatics ; 17(Suppl 19): 500, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155724

RESUMO

BACKGROUND: Strategies to control HIV for improving the quality of patient lives have been aided by the Highly Active Anti-Retroviral Therapy (HAART), which consists of a cocktail of inhibitors targeting key viral enzymes. Numerous new drugs have been developed over the past few decades but viral resistances to these drugs in the targeted viral enzymes are increasingly reported. Nonetheless the acquired mutations often reduce viral fitness and infectivity. Viral compensatory secondary-line mutations mitigate this loss of fitness, equipping the virus with a broad spectrum of resistance against these drugs. While structural understanding of the viral protease and its drug resistance mutations have been well established, the interconnectivity and development of structural cross-resistance remain unclear. This paper reports the structural analyses of recent clinical mutations on the drug cross-resistance effects from various protease and protease inhibitors (PIs) complexes. METHODS: Using the 2015 updated clinical HIV protease mutations, we constructed a structure-based correlation network and a minimum-spanning tree (MST) based on the following features: (i) topology of the PI-binding pocket, (ii) allosteric effects of the mutations, and (iii) protease structural stability. RESULTS AND CONCLUSION: Analyis of the network and the MST of dominant mutations conferring resistance to the seven PIs (Atazanavir-ATV, Darunavir-DRV, Indinavir-IDV, Lopinavir-LPV, Nelfinavir-NFV, Saquinavir-SQV, and Tipranavir-TPV) showed that cross-resistance can develop easily across NFV, SQV, LPV, IDV, and DRV, but not for ATV or TPV. Through estimation of the changes in vibrational entropies caused by each reported mutation, some secondary mutations were found to destabilize protease structure. Our findings provide an insight into the mechanism of PI cross-resistance and may also be useful in guiding the selection of PI in clinical treatment to delay the onset of cross drug resistance.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , Protease de HIV/genética , HIV-1/genética , Mutação/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...