Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Environ Sci Technol ; 58(26): 11760-11770, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900969

RESUMO

Oxygenated volatile organic compounds (OVOCs), emitted in large quantities by the chemical industry, are a major contributor to the formation of ozone and subsequent particulate matter. For the efficient catalytic oxidation of OVOCs, the challenges of molecular activation and intermediate inhibition remain. The construction of bifunctional active sites with specific structures offers a promising way to overcome these problems. Here, the Pd@Layered-CoOx/MFI bifunctional catalyst with core-shell active sites was rationally fabricated though a two-step ligand pyrolysis method, which exhibits a superb oxidation efficiency toward ethyl acetate (EA). Over this, 13.4% of EA (1000 ppm) can be oxidized at just 140 °C with a reaction rate of 13.85 mmol·gPd-1·s-1, around 176.7 times higher than that of the conventional Pd-CoOx/MFI catalyst. The electronic coupling of the Pd-Co pair promotes the electron back-donation from Pd nanoparticles to the layered CoOx shell and facilitates the formation of Pd2+ species, which greatly enhances the adsorption and activation of the electron-rich C═O bond of the EA molecules. In addition, the synergy of these core-shell Pd@Layered-CoOx sites accelerates the activation and transformation of *O species, which inhibit the formation of acetaldehyde and ethanol byproducts, ensuring the rapid total oxidation of EA molecules via the Mars-van Krevelen mechanism. This work established a solid foundation for exploring robust bifunctional catalysts for deep OVOC purification.


Assuntos
Oxirredução , Catálise , Paládio/química , Compostos Orgânicos Voláteis/química , Acetatos/química
2.
Org Lett ; 26(25): 5318-5322, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38888237

RESUMO

Herein we report the discovery of an azabicyclo[2.1.1]hexane piperazinium methanesulfonate salt from an unexpected rearrangement reaction in the preparation of ligand-directed degraders (LDDs). This bench-stable compound was found to be a versatile electrophile in a ring-opening reaction with various types of nucleophiles. Its utility as a versatile medicinal chemistry building block is further demonstrated in the synthesis of an LDD compound targeting degradation of the androgen receptor.


Assuntos
Compostos Azabicíclicos , Piperazinas , Estrutura Molecular , Piperazinas/química , Piperazinas/síntese química , Compostos Azabicíclicos/química , Compostos Azabicíclicos/síntese química , Química Farmacêutica , Ligantes , Sais/química
3.
ACS Appl Mater Interfaces ; 16(17): 21828-21837, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639177

RESUMO

Two-dimensional (2D) van der Waals materials are increasingly seen as potential catalysts due to their unique structures and unmatched properties. However, achieving precise synthesis of these remarkable materials and regulating their atomic and electronic structures at the most fundamental level to enhance their catalytic performance remain a significant challenge. In this study, we synthesized single-crystal bulk PtTe crystals via chemical vapor transport and subsequently produced atomically thin, large PtTe nanosheets (NSs) through electrochemical cathode intercalation. These NSs are characterized by a significant presence of Te vacancy pairs, leading to undercoordinated Pt atoms on their basal planes. Experimental and theoretical studies together reveal that Te vacancy pairs effectively optimize and enhance the electronic properties (such as charge distribution, density of states near the Fermi level, and d-band center) of the resultant undercoordinated Pt atoms. This optimization results in a significantly higher percentage of dangling O-H water, a decreased energy barrier for water dissociation, and an increased binding affinity of these Pt atoms to active hydrogen intermediates. Consequently, PtTe NSs featuring exposed and undercoordinated Pt atoms demonstrate outstanding electrocatalytic activity in hydrogen evolution reactions, significantly surpassing the performance of standard commercial Pt/C catalysts.

4.
J Colloid Interface Sci ; 668: 98-109, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670000

RESUMO

Developing cost-effective monolith catalyst with superior low-temperature activity is critical for oxidative efficacious removal of industrial volatile organic compounds (VOCs). However, the complexity of the industrial flue gas conditions demands the need for high moisture tolerance, which is challenging. Herein, CoMn-Metal Organic Framework (CoMn-MOF) was in situ grown on Ni foam (NiF) at room temperature to synthesize the cost-effective monolith catalyst. The optimized catalyst, Co1Mn1/NiF, exhibited excellent performance in toluene oxidation (T90 = 239 °C) due to the substitution of manganese into the cobalt lattice. This substitution weakened the Co-O bond strength, creating more oxygen vacancies and increasing the active oxygen species content. Additionally, experimentally and computationally evidence revealed that the mutual inhibiting effect of three typical aromatic hydrocarbons (benzene, toluene and m-xylene) over the Co1Mn1/NiF catalyst was attributed to the competitive adsorption occurring on the active site. Furthermore, the Co1Mn1/NiF catalyst also presents outstanding water resistance, particularly at a concentration of 3 vol%, where the activity is even enhanced. This was attributed to the lower water adsorption and dissociation energy derived from the interaction between the bimetals. Results demonstrate that the dissociation of water vapor enables more reactive oxygen species to participate in the reaction which reduces the formation of intermediates and facilitates the reaction. This investigation provides new insights into the preparation of oxygen vacancy-rich monolith catalysts with high water resistance for practical applications.

5.
Expert Opin Ther Targets ; 28(4): 237-250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650383

RESUMO

INTRODUCTION: Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED: Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION: To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Imunoterapia/métodos , Transdução de Sinais , Antineoplásicos/farmacologia , Patentes como Assunto , Inibidores de Proteínas Quinases/farmacologia , Desenvolvimento de Medicamentos
6.
Environ Sci Technol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319875

RESUMO

Light alkanes (LAs), typical VOCs existing in both stationary and mobile sources, pose significant environmental concerns. Although noble metal catalysts demonstrate strong C-H bond activation, their effectiveness in degrading LAs is hindered by inherent challenges, including poor chemical stability and water resistance. Here, from a new perspective, we propose a feasible strategy that adjusting the metal bond lengths within Pd clusters through partial substitution of smaller radius 3d transition metals (3dTMs) to prioritize the activation of low-energy C-C bonds within LAs. Benefiting from this, PdCo/CeO2 exhibits exceptional catalytic performance in propane degradation due to their high capacity for C-C cleavage stemming from the shorter Pd-Co length (2.51 Å) and lower coordination number (1.73), boosting the activation of α-H and ß-H of propane simultaneously and accelerating the mobility of postactivated oxygen species to prevent Pd center deep oxidation. The presence of 3dTMs on Pd clusters improves the redox and charge transfer ability of catalysts, resulting in an amplified generation of oxygen vacancies and facilitating the adsorption and activation of reactants. Mechanistic studies and DFT calculations suggest that the substitution of 3dTMs significantly accelerate C-C bond cleavage within C3 intermediates to generate the subsequent C2 and C1 intermediates, suppressing the generation of harmful byproducts.

7.
Angew Chem Int Ed Engl ; 63(16): e202319856, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354272

RESUMO

C-C linked glutarimide-containing structures with direct utility in the preparation of cereblon-based degraders (PROTACs, CELMoDs) can be assessed in a single step from inexpensive, commercial α-bromoglutarimide through a unique Brønsted-acid assisted Ni-electrocatalytic approach. The reaction tolerates a broad array of functional groups that are historically problematic and can be applied to the simplified synthesis of dozens of known compounds that have only been procured through laborious, wasteful, multi-step sequences. The reaction is scalable in both batch and flow and features a trivial procedure wherein the most time-consuming aspect of reaction setup is weighing out the starting materials.


Assuntos
Níquel , Níquel/química , Catálise , Oxirredução
8.
Environ Sci Technol ; 58(3): 1752-1762, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190653

RESUMO

The widespread presence of formaldehyde (HCHO) pollutant has aroused significant environmental and health concerns. The catalytic oxidation of HCHO into CO2 and H2O at ambient temperature is regarded as one of the most efficacious and environmentally friendly approaches; to achieve this, however, accelerating the intermediate formate species formation and decomposition remains an ongoing obstacle. Herein, a unique tandem catalytic system with outstanding performance in low-temperature HCHO oxidation is proposed on well-structured Pd/Mn3O4-MnO catalysts possessing bifunctional catalytic centers. Notably, the optimized tandem catalyst achieves complete oxidation of 100 ppm of HCHO at just 18 °C, much better than the Pd/Mn3O4 (30%) and Pd/MnO (27%) counterparts as well as other physical tandem catalysts. The operando analyses and physical tandem investigations reveal that HCHO is primarily activated to gaseous HCOOH on the surface of Pd/Mn3O4 and subsequently converted to H2CO3 on the Pd/MnO component for deep decomposition. Theoretical studies disclose that Pd/Mn3O4 exhibits a favorable reaction energy barrier for the HCHO → HCOOH step compared to Pd/MnO; while conversely, the HCOOH → H2CO3 step is more facilely accomplished over Pd/MnO. Furthermore, the nanoscale intimacy between two components enhances the mobility of lattice oxygen, thereby facilitating interfacial reconstruction and promoting interaction between active sites of Pd/Mn3O4 and Pd/MnO in local vicinity, which further benefits sustained HCHO tandem catalytic oxidation. The tandem catalysis demonstrated in this work provides a generalizable platform for the future design of well-defined functional catalysts for oxidation reactions.


Assuntos
Formaldeído , Paládio , Temperatura , Domínio Catalítico , Oxirredução , Catálise , Paládio/química
9.
Environ Sci Technol ; 57(49): 20962-20973, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008907

RESUMO

As a generally existing component in industrial streams, H2O usually inhibits the catalytic degradation efficiency of volatile organic compounds (VOCs) greatly. Here, we propose a novel strategy that accelerates the H2O dissociation and facilitates positive feedbacks during VOC oxidation by fabricating citric acid (CA)-assisted Pt(K)-Mn2O3/SiO2 (Pt-Mn/KS-xCA). Results reveal that the complexation of carboxyl groups of citric acid with Mn cations leads to the formation of small Mn2O3 (4.1 ± 0.2 nm) and further enhances the Mn-O-Pt interaction (strengthened by the Si-O-Mn interaction), which can transfer more electrons from Pt-Mn/KS-6CA to H2O, thus facilitating its breaking of covalent bonds. It subsequently produces abundant surface hydroxyl groups, improving the adsorption and activation abilities of acetone reactant and ethanol intermediate. Attributing to these, the acetone turnover frequency value of Pt-Mn/KS-6CA is 1.8 times higher than that of Pt-Mn/KS at 160 °C, and this multiple changes to 6.3 times in the presence of H2O. Remarkably, acetone conversion over Pt-Mn/KS-6CA increases by up to 14% in the presence of H2O; but it decreases by up to 26% for Pt-Mn/KS due to its weak dissociation ability and high adsorption capacity toward H2O. This work sheds new insights into the design of highly efficient catalytic materials for VOC degradation under humid conditions.


Assuntos
Compostos Orgânicos Voláteis , Água , Água/química , Acetona , Compostos Orgânicos Voláteis/química , Dióxido de Silício , Ácido Cítrico
10.
JACS Au ; 3(11): 3076-3088, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034975

RESUMO

Light alkanes make up a class of widespread volatile organic compounds (VOCs), bringing great environmental hazards and health concerns. However, the low-temperature catalytic destruction of light alkanes is still a great challenge to settle due to their high reaction inertness and weak polarity. Herein, a Co3O4 sub-nanometer porous sheet (Co3O4-SPS) was fabricated and comprehensively compared with its bulk counterparts in the catalytic oxidation of C3H8. Results demonstrated that abundant low-coordinated Co atoms on the Co3O4-SPS surface boost the activation of adsorbed oxygen and enhance the catalytic activity. Moreover, Co3O4-SPS has better surface metal properties, which is beneficial to electron transfer between the catalyst surface and the reactant molecules, promoting the interaction between C3H8 molecules and dissociated O atoms and facilitating the activation of C-H bonds. Due to these, Co3O4-SPS harvests a prominent performance for C3H8 destruction, 100% of which decomposed at 165 °C (apparent activation energy of 49.4 kJ mol-1), much better than the bulk Co3O4 (450 °C and 126.9 kJ mol-1) and typical noble metal catalysts. Moreover, Co3O4-SPS also has excellent thermal stability and water resistance. This study deepens the atomic-level insights into the catalytic capacity of Co3O4-SPS in light alkane purification and provides references for designing efficacious catalysts for thermocatalytic oxidation reactions.

11.
J Colloid Interface Sci ; 651: 368-375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544225

RESUMO

Recently, atomically precise metal nanoclusters (NCs) become a new class of photosensitizer for light energy conversion in metal-cluster-sensitized semiconductor (MCSS) system. However, fundamental understanding for the suitable combination of NCs and semiconductor is still unclear. Aside from aspects of light harvesting, energy level alignment and catalytic activity, interfacial interaction behavior at NCs/semiconductor interface is also crucial due to its important influence in charge transportation. In this work, the interface interaction between Au NCs and TiO2 is examined by precise transformation of Au NCs from Au22(SG)18 to Au18(SG)14, as well as its effect on photocatalytic hydrogen production activity. From the optical, charge transport and solid-states spectroscopy analyses, it is able to display that precisely tuning the number of core atoms from Au22(SG)18 to Au18(SG)14 results in the strong interface interaction between Au NCs and TiO2, reflecting in high difference of work function and modified surface band bending of TiO2, therefore promoting the injection of electrons from NCs to TiO2 and reducing interfacial charges recombination. As a result, Au18(SG)14/TiO2 shows higher hydrogen generation rate than Au22(SG)18/TiO2 under light irradiation. This work would provide new insights into rational combination of metal NCs with semiconductor and highlights the overlooked effect of interfacial interaction behavior on light energy conversion.

12.
Sci Total Environ ; 904: 166319, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586509

RESUMO

Amorphousness effectively improves the electron transfer rate of zero-valent iron. In this study, a novel kaolinite loading amorphous zero-valent iron composite (K-AZVI) was prepared and applied to the remediation of soils with cadmium (Cd) pollution concentrations of 20, 50, and 100 mg/kg respectively. The results showed that the application of K-AZVI increased the pH and cation exchange capacity (CEC) of soil, and decreased the dissolved organic carbon (DOC) and organic matter (OM) of soil, thus indirectly promoting the adsorption of Cd in the soil. After 28 days of stabilization, the stabilizing efficiency of K-AZVI on the water-soluble Cd content in soil reached 98.72 %. Under the amendment of 0.25 %-1.0 % (w/w), the available Cd content in 20-100 mg/kg contaminated soil decreased by 46.47 %-62.23 %, 24.10 %-41.52 %, and 16.09 %-30.51 % respectively compared with CK. More importantly, the addition of K-AZVI promoted the transformation of 33.18 %-48.42 % exchangeable fraction (EXC) to 10.09 %-20.14 % residual fraction (RES), which increased the abundance and diversity of soil bacterial communities. Comprehensive risk assessment showed that adding 1.0 % K-AZVI provided the best remediation on contaminated soil. In addition, the results of scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) of K-AZVI before and after the reaction showed that the stabilization mechanism of K-AZVI to Cd in soil is mainly the stable metal species (Cd(OH)2, CdO and CdFe2O4) formed by the direct complexation and coprecipitation of a large number of iron oxides formed by the rapid corrosion of amorphous zero-valent iron (AZVI). Overall, this work provides a promising approach to the remediation of Cd-contaminated soil using K-AZVI composites.

13.
Langmuir ; 39(27): 9488-9502, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368460

RESUMO

Amorphous zerovalent iron (AZVI) has gained considerable attention due to its remarkable reactivity, but there is limited research on sulfidated amorphous zerovalent iron (SAZVI) and the influence of different sulfur precursors on its reactivity remains unclear. In this study, SAZVI materials with an amorphous structure were synthesized using various sulfur precursors, resulting in significantly increased specific surface area and hydrophobicity compared to AZVI. The Cr(VI) removal efficiency of SAZVI-Na2S, which exhibited the most negative free corrosion potential (-0.82 V) and strongest electron transfer ability, was up to 8.5 times higher than that of AZVI. Correlation analysis revealed that the water contact angle (r = 0.87), free corrosion potential (r = -0.92), and surface Fe(II) proportion (r = 0.98) of the SAZVI samples played crucial roles in Cr(VI) removal. Furthermore, the enhanced elimination ability of SAZVI-Na2S was analyzed, primarily attributed to the adsorption of Cr(VI) by the FeSx shell, followed by the rapid release of internal electrons to reduce Cr(VI) to Cr(III). This process ultimately led to the precipitation of FeCr2O4 and Cr2S3 on the surface of SAZVI-Na2S, resulting in their removal from the water. This study provides insights into the influence of sulfur precursors on the reactivity of SAZVI and offers a new strategy for designing highly active AZVI for efficient Cr(VI) removal.

14.
Front Immunol ; 14: 1145706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251413

RESUMO

Background: Diffuse intrinsic pontine gliomas (DIPGs) are rare and fatal pediatric brainstem gliomas with no cure. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have been proven effective in treating glioblastoma (GBM) in preclinical studies. However, there are no relevant studies on the CAR-NK treatment for DIPG. Our study is the first to evaluate the anti-tumor activity and safety of GD2-CAR NK-92 cells treatment for DIPG. Methods: Five patient-derived DIPG cells and primary pontine neural progenitor cell (PPC) were used to access disialoganglioside GD2 expression. Cell killing activity of GD2-CAR NK-92 cells was analyzed by in vitro cytotoxicity assays. Two DIPG patient-derived xenograft models were established to detect the anti-tumor efficacy of GD2-CAR NK-92 cells in vivo. Results: Among the five patient-derived DIPG cells, four had high GD2 expression, and one had low GD2 expression. In in vitro assays, GD2-CAR NK-92 cells could effectively kill DIPG cells with high GD2 expression while having limited activity against DIPG cells with low GD2 expression. In in vivo assays, GD2-CAR NK-92 cells could inhibit tumor growth in TT150630 DIPG patient-derived xenograft mice (high GD2 expression) and prolong the overall survival of the mice. However, GD2-CAR NK-92 showed limited anti-tumor activity for TT190326DIPG patient-derived xenograft mice (low GD2 expression). Conclusion: Our study demonstrates the potential and safety of GD2-CAR NK-92 cells for adoptive immunotherapy of DIPG. The safety and anti-tumor effect of this therapy need to be further demonstrated in future clinical trials.


Assuntos
Glioma Pontino Intrínseco Difuso , Glioma , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Células Matadoras Naturais , Imunoterapia Adotiva , Glioma/tratamento farmacológico
15.
J Am Chem Soc ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027322

RESUMO

The total syntheses of nine grayanane diterpenoids, namely, GTX-II (1), GTX-III (2), rhodojaponin III (3), GTX-XV (4), principinol D (5), iso-GTX-II (6), 1,5-seco-GTX-Δ1,10-ene (7), and leucothols B (8) and D (9), that belong to five distinct subtypes, were disclosed in a divergent manner. Among them, six members were accomplished for the first time. The concise synthetic approach features three key transformations: (1) an oxidative dearomatization-induced [5 + 2] cycloaddition/pinacol rearrangement cascade to assemble the bicyclo[3.2.1]octane carbon framework (CD rings); (2) a photosantonin rearrangement to build up the 5/7 bicycle (AB rings) of 1-epi-grayanoids; and (3) a Grob fragmentation/carbonyl-ene process to access four additional subtypes of grayanane skeletons. Density functional theory calculations were performed to elucidate the mechanistic origins of the crucial divergent transformation, which combined with late-stage synthetic findings provided insights into the biosynthetic relationships between these diverse skeletons.

16.
Langmuir ; 39(11): 4026-4036, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877598

RESUMO

Amorphous zero-valent iron (AZVI) has attracted wide attention due to its high-efficiency reduction ability. However, the effect of different EDA/Fe(II) molar ratios on the physicochemical properties of the synthesized AZVI requires further investigation. Herein, series of AZVI samples were prepared by changing the molar ratio of EDA/Fe(II) to 1/1 (AZVI@1), 2/1 (AZVI@2), 3/1 (AZVI@3), and 4/1 (AZVI@4). When the EDA/Fe(II) ratio increased from 0/1 to 3/1, the Fe0 proportion on the AZVI surface increased from 26.0 to 35.2% and the reducing ability was enhanced. As for AZVI@4, the surface was severely oxidized to form a large amount of Fe3O4, and the Fe0 content was only 74.0%. Moreover, the removal ability of Cr(VI) was in the order AZVI@3 > AZVI@2 > AZVI@1 > AZVI@4. The isothermal titration calorimetry results revealed that the increase of the molar ratio of EDA/Fe(II) would lead to the stronger complexation of EDA with Fe(II), which resulted in the gradual decrease of the yield of AZVI@1 to AZVI@4 and the gradual deterioration of water pollution after the synthesis. Therefore, based on the evaluation of all indicators, AZVI@2 was the optimal material, not only because its yield was as high as 88.7% and the secondary water pollution level was low, but most importantly, the removal efficiency of Cr(VI) by AZVI@2 was excellent. Furthermore, the actual Cr(VI) wastewater with the concentration of 14.80 mg/L was treated with AZVI@2, and the removal rate of 97.0% was achieved after only a 30 min reaction. This work clarified the effect of different ratios of EDA/Fe(II) on the physicochemical properties of AZVI, which provided insights for guiding the reasonable synthesis of AZVI and is also conducive to investigating the reaction mechanism of AZVI in Cr(VI) remediation.

17.
J Am Chem Soc ; 145(14): 7753-7757, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995337

RESUMO

A concise total synthesis of the complex guanidinium toxin KB343 is reported traversing through an unusual sequence of chemoselective transformations and strategic skeletal reorganization. The absolute configuration is confirmed through an enantioselective route, and the structures of all key intermediates and the natural product itself are unassailably confirmed through X-ray crystallographic analysis.


Assuntos
Produtos Biológicos , Estereoisomerismo , Guanidina , Cristalografia por Raios X
18.
Hepatobiliary Pancreat Dis Int ; 22(3): 282-287, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35246397

RESUMO

BACKGROUND: The risk factors for the recurrent choledocholithiasis after endoscopic retrograde cholangiopancreatography (ERCP) have not been well studied. The aim of this study was to explore the risk factors of recurrent choledocholithiasis. METHODS: We carried out a retrospective analysis of data collected between January 1, 2010 and January 1, 2020. Univariate analysis and multivariate analysis were used to explore the independent risk factors of recurrent choledocholithiasis following therapeutic ERCP. RESULTS: In total, 598 patients were eventually selected for analysis, 299 patients in the recurrent choledocholithiasis group and 299 patients in the control group. The overall rate of recurrent choledocholithiasis was 6.91%. Multivariate analysis showed that diabetes [odds ratio (OR) = 3.677, 95% confidence interval (CI): 1.875-7.209; P < 0.001], fatty liver (OR = 4.741, 95% CI: 1.205-18.653; P = 0.026), liver cirrhosis (OR = 3.900, 95% CI: 1.358-11.201; P = 0.011), history of smoking (OR = 3.773, 95% CI: 2.060-6.908; P < 0.001), intrahepatic bile duct stone (OR = 4.208, 95% CI: 2.220-7.976; P < 0.001), biliary stent (OR = 2.996, 95% CI: 1.870-4.800; P < 0.001), and endoscopic papillary balloon dilation (EPBD) (OR = 3.009, 95% CI: 1.921-4.715; P < 0.001) were independent risk factors of recurrent choledocholithiasis. However, history of drinking (OR = 0.183, 95% CI: 0.099-0.337; P < 0.001), eating light food frequently (OR = 0.511, 95% CI: 0.343-0.760; P = 0.001), and antibiotic use before ERCP (OR = 0.315, 95% CI: 0.200-0.497; P < 0.001) were independent protective factors of recurrent choledocholithiasis. CONCLUSIONS: Patients with the abovementioned risk factors are more likely to have recurrent CBD stones. Patients who eat light food frequently and have a history of drinking are less likely to present with recurrent CBD calculi.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Coledocolitíase , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Coledocolitíase/diagnóstico por imagem , Coledocolitíase/cirurgia , Estudos Retrospectivos , Cateterismo , Fatores de Risco , Esfinterotomia Endoscópica
19.
Environ Sci Technol ; 56(22): 16189-16199, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36214785

RESUMO

Volatile organic amines are a category of typical volatile organic compounds (VOCs) extensively presented in industrial exhausts causing serious harm to the atmospheric environment and human health. Monometallic Pd and Cu-based catalysts are commonly adopted for catalytic destruction of hazardous organic amines, but their applications are greatly limited by the inevitable production of toxic amide and NOx byproducts and inferior low-temperature activity. Here, a CuO/Pd@SiO2 core-shell-structured catalyst with diverse functionalized active sites was creatively developed, which realized the total decomposition of n-butylamine at 260 °C with a CO2 yield and N2 selectivity reaching up to 100% and 98.3%, respectively (obviously better than those of Pd@SiO2 and CuO/SiO2), owing to the synergy of isolated Pd and Cu sites in independent mineralization of n-butylamine and generation of N2, respectively. The formation of amide and short-chain aliphatic hydrocarbon intermediates via C-C bond cleavage tended to occur over Pd sites, while the C-N bond was prone to breakage over Cu sites, generating NH2· species and long free-N chain intermediates at low temperatures, avoiding the production of hazardous amide and NOx. The SiO2 channel collapse and H+ site production resulted in the formation of N2O via suppressing NH2· diffusion. This work provides critical guidance for a rational fabrication of catalysts with high activity and N2 selectivity for environmentally friendly destruction of nitrogen-containing VOCs.


Assuntos
Butilaminas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Domínio Catalítico , Amidas
20.
Environ Sci Technol ; 56(18): 13379-13390, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36074134

RESUMO

The evaluation of the poisoning effect of complex components in practical gas on DCM (dichloromethane) catalytic ozonation is of great significance for enhancing the technique's environmental flexibility. Herein, Ca, Pb, As, and NO/SO2 were selected as a typical alkaline-earth metal, heavy metal, metalloid, and acid gas, respectively, to evaluate their interferences on catalytic behaviors and surface properties of an optimized urchin-like CuMn catalyst. Ca/Pb loading weakens the formation of oxygen vacancies, oxygen mobility, and acidity due to the fusion of Mn-Ca/Pb-O, leading to their inferior catalytic performance with poor CO2 selectivity and mineralization rate. Noticeably, the presence of As induces excessively strong acidity, facilitating the inevitable formation of byproducts. Catalytic co-ozonation of NO/DCM is achieved with stoichiometric ozone addition. Unfortunately, SO2 introduction brings irreversible deactivation due to strong competition adsorption and the loss of active sites. Unexpectedly, Ca loading protects active sites from an attack by SO2. The formation of unstable sulfites and the released Mn-O structure offset the negative effect from SO2. Overall, the catalytic ozonation of DCM exhibits a distinctive priority in the antipoisoning of metals with the maintenance of DCM conversion. The construction of more stable acid sites should be the future direction of catalyst design; otherwise, catalytic ozonation should be arranged together with post heavy metal capture and a deacidification system.


Assuntos
Metaloides , Ozônio , Dióxido de Carbono , Catálise , Chumbo , Cloreto de Metileno , Ozônio/química , Sulfitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...