Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Intensive Crit Care Nurs ; 86: 103831, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265413

RESUMO

BACKGROUND: The diaphragm is crucial for ventilator weaning, but its specific impact on weaning indicators needs further clarification. This study investigated the variability in weaning outcomes across different diaphragm function populations and the value of respiratory drive and inspiratory effort in weaning. METHODS: This observational case-control study enrolled patients on mechanical ventilation for more than 48 h and completed a 30-minute spontaneous breathing trial (SBT) with pressure-support ventilation for the first time. After the SBT, airway pressure at 100 ms during occlusion (P0.1), inspiratory effort, and diaphragmatic ultrasound were evaluated to predict weaning outcomes. Weaning failure was defined as re-intubation within 48 h of weaning, the need for therapeutic non-invasive ventilation, or death. RESULTS: 68 patients with a mean age of 63.21 ± 15.15 years were included. In patients with diaphragm thickness (DT) ≥ 2 mm, P0.1 (P=0.002), pressure-muscle index (PMI) (P=0.012), and occluded expiratory airway pressure swing (ΔPocc) (P=0.030) were significantly higher in those who failed weaning. Conversely, for patients with DT<2 mm, PMI (P=0.003) and ΔPocc (P=0.002) were lower in the weaning failure group. Additionally, within the DT≥2 mm group, P0.1 demonstrated a higher area under the curve (AUC) for weaning prediction (0.889 vs. 0.739) compared to those with DT<2 mm. CONCLUSIONS: PMI and ΔPocc are predictive of weaning outcomes in patients with diaphragm thickness ≥ 2 mm, where the assessment value of P0.1 is notably higher. Diaphragm function significantly influences the accuracy of weaning predictions based on respiratory drive and inspiratory effort. IMPLICATIONS FOR CLINICAL PRACTICE: Our findings indicate that the effectiveness of respiratory drive and inspiratory effort in predicting successful weaning from mechanical ventilation may vary across different patient populations. Diaphragm function plays a crucial role in weaning assessments, particularly when using P0.1, the pressure-muscle index (PMI), and occluded expiratory airway pressure swing (ΔPocc).

2.
EBioMedicine ; 107: 105305, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180788

RESUMO

BACKGROUND: Tissue-specific analysis of the transcriptome is critical to elucidating the molecular basis of complex traits, but central tissues are often not accessible. We propose a methodology, Multi-mOdal-based framework to bridge the Transcriptome between PEripheral and Central tissues (MOTPEC). METHODS: Multi-modal regulatory elements in peripheral blood are incorporated as features for gene expression prediction in 48 central tissues. To demonstrate the utility, we apply it to the identification of BMI-associated genes and compare the tissue-specific results with those derived directly from surrogate blood. FINDINGS: MOTPEC models demonstrate superior performance compared with both baseline models in blood and existing models across the 48 central tissues. We identify a set of BMI-associated genes using the central tissue MOTPEC-predicted transcriptome data. The MOTPEC-based differential gene expression (DGE) analysis of BMI in the central tissues (including brain caudate basal ganglia and visceral omentum adipose tissue) identifies 378 genes overlapping the results from a TWAS of BMI, while only 162 overlapping genes are identified using gene expression in blood. Cellular perturbation analysis further supports the utility of MOTPEC for identifying trait-associated gene sets and narrowing the effect size divergence between peripheral blood and central tissues. INTERPRETATION: The MOTPEC framework improves the gene expression prediction accuracy for central tissues and enhances the identification of tissue-specific trait-associated genes. FUNDING: This research is supported by the National Natural Science Foundation of China 82204118 (D.Z.), the seed funding of the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province (2020E10004), the National Institutes of Health (NIH) Genomic Innovator Award R35HG010718 (E.R.G.), NIH/NHGRI R01HG011138 (E.R.G.), NIH/NIA R56AG068026 (E.R.G.), NIH Office of the Director U24OD035523 (E.R.G.), and NIH/NIGMS R01GM140287 (E.R.G.).


Assuntos
Perfilação da Expressão Gênica , Especificidade de Órgãos , Transcriptoma , Humanos , Especificidade de Órgãos/genética , Biologia Computacional/métodos , Índice de Massa Corporal , Regulação da Expressão Gênica , Algoritmos
3.
J Plant Physiol ; 302: 154320, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39111193

RESUMO

Flavonoid compounds are widely present in various organs and tissues of different plants, playing important roles when plants are exposed to abiotic stresses. Different types of flavonoids are biosynthesized by a series of enzymes that are encoded by a range of gene families. In this study, a total of 63 flavonoid pathway genes were identified from the genome of Medicago truncatula. Gene structure analysis revealed that they all have different gene structure, with most CHS genes containing only one intron. Additionally, analysis of promoter sequences revealed that many cis-acting elements responsive to abiotic stress are located in the promoter region of flavonoid pathway genes. Furthermore, analysis on M. truncatula gene chip data revealed significant changes in expression level of most flavonoid pathway genes under the induction of salt or drought treatment. qRT-PCR further confirmed significant increase in expression level of several flavonoid pathway genes under NaCl and mannitol treatments, with CHS1, CHS9, CHS10, F3'H4 and F3'H5 genes showing significant up-regulation, indicating they are key genes in response to abiotic stress in M. truncatula. In summary, our study identified key flavonoid pathway genes that were involved in salt and drought response, which provides important insights into possible modification of flavonoid pathway genes for molecular breeding of forage grass with improved abiotic resistance.


Assuntos
Secas , Flavonoides , Regulação da Expressão Gênica de Plantas , Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/fisiologia , Flavonoides/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Salinidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-39012502

RESUMO

PURPOSE: Overexpression of Poly (ADP-ribose) polymerase (PARP) is associated with many diseases such as oncological diseases. Several PARP-targeting radiotracers have been developed to detect tumor in recent years. Two 18F labelled probes based on Olaparib and Rucaparib molecular scaffolds have been evaluated in clinical trials, but their slow hepatic clearance hinders their tumor imaging performance. Although a number of positron emission tomography (PET) probes with lower liver uptake have been designed, the tumor to background ratios remains to be low. Therefore, we designed a probe with low lipid-water partition coefficient to solve this problem. METHODS: A pyridine-containing quinazoline-2,4(1 H,3 H)-dione PARP-targeting group was rationally designed and used to conjugate with the chelator 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to prepare the lead compound named as SMIC-2001 for radiolabeling. In vitro experiments, the lipid-water partition coefficient, stability, binding affinity, and cellular uptake of [68Ga]Ga-SMIC-2001 were determined. In vivo experiments, the U87MG xenograft models were used to evaluate its tumor imaging properties. RESULTS: [68Ga]Ga-SMIC-2001 showed a low Log D7.4 (-3.82 ± 0.06) and high affinity for PARP-1 (48.13 nM). In vivo study revealed that it exhibited a high tumor-to-background contrast in the U87MG xenograft models and mainly renal clearance. And the ratios of tumor to main organs were high except for the kidney (e.g. tumor to liver ratio reached 2.20 ± 0.51) at 60 min p.i. CONCLUSION: In summary, pyridine-containing quinazoline-2,4(1 H,3 H)-dione is a novel PARP-targeting molecular scaffold for imaging probe development, and [68Ga]Ga-SMIC-2001 is a highly promising PET probe capable of imaging tumors with PARP overexpression.

6.
Int J Clin Exp Pathol ; 16(11): 344-351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059172

RESUMO

OBJECTIVES: The aim of the present study was to determine the clinical value of a novel hypoxia-inducible factor (HIF) target EH domain-containing protein 2 (EHD2) for predicting the outcome of patients with clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: GEPIA public database was searched to determine a possible association between HIF2Α and EHD protein family members, and kidney renal clear cell carcinoma data were used to find the expression profile of EHD proteins in ccRCC samples. A tissue microarray from 70 ccRCC samples was used for immunohistochemical analysis to determine the specific expression pattern of EHD2 in ccRCC samples. In addition, univariate and multivariate analyses were performed to assess the utility of EHD2 as an independent prognostic factor for ccRCC. RESULTS: EHD protein family members were all found to be significantly correlated with HIF2Α expression in ccRCC. However, EHD2 was the only protein that was observed to be overexpressed in ccRCC cancer tissues compared with normal tissues. EHD2 and HIF2Α mRNA expression levels were found to be higher in cancer tissues compared with those in adjacent normal tissue according to reverse transcription-quantitative PCR analysis. Among the 70 patients with ccRCC, EHD2 was overexpressed in 52.8% (37/70). Subsequently, EHD2 was found to be significantly associated with both overall survival (P=0.016) and disease-free survival (P=0.029). Furthermore, by multivariate analysis, EHD2 was an independent prognostic factor for patients with ccRCC. CONCLUSION: EHD2 is a novel HIF target, based on a relatively large sample of EHD2 research in patients with ccRCC. Furthermore, our study provided evidence that EHD2 can serve as a promising biomarker for predicting ccRCC outcome.

7.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961219

RESUMO

Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Furthermore, drugs with genetic evidence are more likely to progress successfully through clinical trials towards FDA approval. Exploiting these developments, single gene-based drug repositioning methods have been implemented, but approaches leveraging the entire spectrum of molecular signatures are critically underexplored. Most multi-gene-based approaches rely on differential gene expression (DGE) analysis, which is prone to identify the molecular consequence of disease and renders causal inference challenging. We propose a framework TReD (Transcriptome-informed Reversal Distance) that integrates population-level disease signatures robust to reverse causality and cell-based drug-induced transcriptome response profiles. TReD embeds the disease signature and drug profile in a high-dimensional normed space, quantifying the reversal potential of candidate drugs in a disease-related cell screen assay. The robustness is ensured by evaluation in additional cell screens. For an application, we implement the framework to identify potential drugs against COVID-19. Taking transcriptome-wide association study (TWAS) results from four relevant tissues and three DGE results as disease features, we identify 37 drugs showing potential reversal roles in at least four of the seven disease signatures. Notably, over 70% (27/37) of the drugs have been linked to COVID-19 from other studies, and among them, eight drugs are supported by ongoing/completed clinical trials. For example, TReD identifies the well-studied JAK1/JAK2 inhibitor baricitinib, the first FDA-approved immunomodulatory treatment for COVID-19. Novel potential candidates, including enzastaurin, a selective inhibitor of PKC-beta which can be activated by SARS-CoV-2, are also identified. In summary, we propose a comprehensive genetics-anchored framework integrating population-level signatures and cell-based screens that can accelerate the search for new therapeutic strategies.

8.
Plant Physiol Biochem ; 203: 108073, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37839274

RESUMO

Glycine max L. is rich in isoflavonoids with diverse biological activities. However, isoflavonoid biosynthetic pathway is not fully elucidated in soybean. In the present study, we investigated characteristics of all the thirteen CYP93 subfamily members, and found GmCYP93A1, GmCYP93A2, and GmCYP93A3 are closely clustered, preferentially expressed in roots, and highly inducible by elicitor. When expressed in yeast, GmCYP93A1 was active towards liquiritigenin, naringenin, and 3,9-dihydroxyptercarpan, GmCYP93A2 towards 3,9-dihydroxyptercarpan with strict substrate specificity, whereas GmCYP93A3 did not show any activity towards all the tested substrates. Both GmCYP93A1 and GmCYP93A2 could catalyze 3,9-dihydroxyptercarpan into daidzein and glycinol, with both hydroxylation and aryl migration activity. Site-directed mutagenesis assays revealed that mutation in Thr446 to Ser446 in heme-binding domain increased the enzyme activity of GmCYP93A1 towards 3,9-dihydroxyptercarpan, which highlights its key amino acid residues as shown with its molecular docking with 3,9-dihydroxyptercarpan and HEM. Overexpression of GmCYP93A1 and GmCYP93A2 in the soybean hairy roots reduced the content of daidzein, whereas knockdown of these two genes increased genistein content, indicating changes in expression level of GmCYP93A1 and GmCYP93A2 altered isoflavonoid flux in soybean. Our studies on the activity of GmCYP93A1 and GmCYP93A2 enriched diverse functions of CYP93 subfamily in soybean isoflavonoid pathway, which is valuable for further understanding and bioengineering of isoflavonoid pathway in soybean.


Assuntos
Glycine max , Isoflavonas , Glycine max/genética , Glycine max/metabolismo , Simulação de Acoplamento Molecular , Isoflavonas/metabolismo
9.
Mol Pharm ; 20(8): 4120-4128, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487027

RESUMO

As an important cancer-associated fibroblast-specific biomarker, fibroblast activation protein (FAP) has become an attractive target for tumor diagnosis and treatment. However, most FAP-based radiotracers showed inadequate uptake and short retention in tumors. In this study, we designed and synthesized a novel FAP ligand (DOTA-GPFAPI-04) through assembling three functional moieties: a quinoline-based FAP inhibitor for specifically targeting FAP, a FAP substrate Gly-Pro as a linker for increasing the FAP protein interaction, and a 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) chelator for radiolabeling with different radionuclides. The FAP targeting ability of DOTA-GPFAPI-04 was investigated by molecular docking studies. DOTA-GPFAPI-04 was then radiolabeled with 68Ga to give [68Ga]Ga-DOTA-GPFAPI-04 for positron emission tomography (PET) imaging of glioblastoma. [68Ga]Ga-DOTA-GPFAPI-04 exhibited a purity of >98% and high stability analyzed by radio-HPLC in saline and mouse serum. Cell uptake studies demonstrated the targeting specificity of the probe. Further in vivo pharmacokinetic studies in normal mice demonstrated the quick clearance of the probe. Moreover, compared with the widely studied [68Ga]Ga-FAPI-04, [68Ga]Ga-DOTA-GPFAPI-04 showed much higher U87MG tumor uptake values (4.467 ± 0.379 for [68Ga]Ga-DOTA-GPFAPI-04 and 1.267 ± 0.208% ID/g for [68Ga]Ga-FAPI-04 at 0.5 h post-injection, respectively). The area under the curve based on time-activity curve (TAC) analysis for tumor radioactivity in small animal models was 422.5 for [68Ga]Ga-DOTA-GPFAPI-04 and 98.14 for [68Ga]Ga-FAPI-04, respectively, demonstrating that the former had longer tumor retention time. The tumor-to-muscle (T/M) ratio for [68Ga]Ga-DOTA-GPFAPI-04 reached 9.15 in a U87MG xenograft animal model. PET imaging and blocking assays showed that [68Ga]Ga-DOTA-GPFAPI-04 had specific tumor uptake. In summary, this study demonstrates the successful synthesis and evaluation of a novel FAPI targeting probe, [68Ga]Ga-DOTA-GPFAPI-04, with a Gly-Pro sequence. It shows favorable in vivo glioblastoma imaging properties and relatively long tumor retention, highlighting DOTA-GPFAPI-04 as a promising molecular scaffold for developing FAP targeting tumor theranostic agents.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Radioisótopos de Gálio , Simulação de Acoplamento Molecular , Tomografia por Emissão de Pósitrons/métodos , Fibroblastos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
10.
Sci Rep ; 13(1): 10075, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344619

RESUMO

This paper focuses on the axial compression performance of 15 concrete-filled double skinned tubes CFDST columns with different CFRP reinforcement schemes. The design of this test used an outer square steel tube with a square steel tube inside, with concrete poured at the sandwich and the inner steel tube kept hollow. The structure is both cost effective and allows the hollow to be used for utility access. However, in recent years damage to CFDST has occurred due to fire, earthquakes, corrosion etc. Therefore, research into the reinforcement and repair of this structure is crucial. Compared to other reinforcement methods, FRP has the advantage of being lighter and more robust and does not significantly alter the original structure. In this study, the mechanical properties of the specimens were further analyzed from the data of load displacement, peak load and ultimate displacement by mainly observing and analyzing the damage mechanism of the specimens through the strengthening effect of different strengthening schemes for different hollow ratios. The results show that when the hollow ratio is not bigger than 0.33, the CFRP reinforcement effect is relatively obvious, especially the three-layer CFRP wrapped CFDST specimens have a substantial increase in bearing capacity and stiffness. Finally, an analytical study was carried out based on previous research and the experimental results agreed well with the calculated results.

11.
Synth Syst Biotechnol ; 8(1): 157-167, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36714060

RESUMO

Glycine max L. accumulates a large amount of isoflavonoid compounds, which is beneficial for plant defense, plant-microbe symbiotic interactions, and human health. Several CYP450 subfamily genes are involved in the flavonoid biosynthetic pathway in plants. In the present study, we found 24 CYP82 subfamily genes were differentially expressed in various tissues of soybean, in Phytophthora sojae-infected soybean varieties and in soybean hairy roots treated with cell wall glucan elicitor. Six of them (GmCYP82A2, GmCYP82A3, GmCYP82A4, GmCYP82A23, GmCYP82C20 and GmCYP82D26) were co-expressed with other known isoflavonoid pathway genes in soybean. Their enzymatic activity in yeast feeding assays showed that only GmCYP82D26 was able to convert naringenin to daidzein with both aryl migration and dehydration function. When GmCYP82D26 was over-expressed in soybean hairy roots, the contents of the two major isoflavonoid aglycones in soybean (daidzein and genistein) were reduced, but total flavonoids were not affected. When GmCYP82D26 was suppressed by RNAi in the hairy roots, daidzein content was decreased but genistein content was increased, with unchanged total flavonoid content. GmCYP82D26 was found to be localized in the endoplasmic reticulum at subcellular level when transiently expressed in tobacco leaf epidermis. GmCYP82D26 gene was preferentially expressed in roots, with low expression level in other tissues in soybean. Homology modeling and molecular docking showed that GmCYP82D26 could form hydrogen bond with both HEM and naringenin at C5-OH and C4 carbonyl. All these results indicated that GmCYP82D26 possesses new and dual enzymatic activity, which bridges the two branches (daidzein and genistein branch) of isoflavonoid pathway in soybean.

12.
J Environ Sci (China) ; 126: 58-69, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503784

RESUMO

Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.


Assuntos
Poluentes Ambientais , Compostos Heterocíclicos , Oryza , Cádmio/toxicidade , Tetraciclina , Antibacterianos
13.
Chemistry ; 29(6): e202203044, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36305371

RESUMO

Bimetallic transition metal chalcogenides (TMCs) materials have emerged as attractive anodes for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of the high intrinsic electronic conductivity, rich redox sites and unique reaction mechanism. In this work, we report the synthesis and electrochemical properties of a novel bimetallic TMCs material CuSbSe2 . The as-prepared anode delivers a high reversible capacity of 545.6  mA h g-1 for SIBs and 592.6  mA h g-1 for LIBs at a current density of 0.2 A g-1 , and an excellent rate capability of 425.9  mA h g-1 at 20 A g-1 for SIBs and 226.0  mA h g-1 at 10 A g-1 for LIBs without any common-used surface modification or carbonaceous compositing. In addition, ex situ X-ray diffraction (XRD) and High-resolution transmission electron microscopy (HRTEM) reveal a combined conversion-alloying reaction mechanism of LIBs and NIBs. Our findings suggest bimetallic CuSbSe2 could be a potential anode material for both SIBs and LIBs.

14.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805915

RESUMO

Nuclear factor YB (NF-YB) are plant-specific transcription factors that play a critical regulatory role in plant growth and development as well as in plant resistance against various stresses. In this study, a total of 49 NF-YB genes were identified from the genomes of Medicago truncatula and Medicago sativa. Multiple sequence alignment analysis showed that all of these NF-YB members contain DNA binding domain, NF-YA interaction domain and NF-YC interaction domain. Phylogenetic analysis suggested that these NF-YB proteins could be classified into five distinct clusters. We also analyzed the exon-intron organizations and conserved motifs of these NF-YB genes and their deduced proteins. We also found many stress-related cis-acting elements in their promoter region. In addition, analyses on genechip for M. truncatula and transcriptome data for M. sativa indicated that these NF-YB genes exhibited a distinct expression pattern in various tissues; many of these could be induced by drought and/or salt treatments. In particular, RT-qPCR analysis revealed that the expression levels of gene pairs MsNF-YB27/MtNF-YB15 and MsNF-YB28/MtNF-YB16 were significantly up-regulated under NaCl and mannitol treatments, indicating that they are most likely involved in salt and drought stress response. Taken together, our study on NF-YB family genes in Medicago is valuable for their functional characterization, as well as for the application of NF-YB genes in genetic breeding for high-yield and high-resistance alfalfa.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Família Multigênica , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
15.
Environ Sci Technol ; 56(13): 9453-9462, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700062

RESUMO

Cocontamination with tetracycline (TC) and arsenic (As) is very common in paddy fields. However, the process and underlying mechanism of arsenite (As(III)) transformation on iron mineral surfaces in the presence of antibiotic contaminants remain unclear. In this study, the release and oxidation of As(III) on ferrihydrite (Fh) surfaces and Fh transformation in the presence of TC under both aerobic and anaerobic conditions were investigated. Our results indicated that the TC-induced reductive dissolution of Fh (Fe(II) release) and TC competitive adsorption significantly promote the release of As, especially under anaerobic conditions. The release of As was increased with increasing TC concentration, whereas it decreased with increasing pH. Interestingly, under both aerobic and anaerobic conditions, the addition of TC enhanced the oxidation of As(III) by Fh and induced the partial transformation of Fh to lepidocrocite. Under aerobic conditions, the adsorbed Fe(II) activated the production of reactive oxygen species (·OH and 1O2) from dissolved O2, with Fe(IV) being responsible for As(III) oxidation. Under anaerobic conditions, the abundant oxygen vacancies of Fh affected the oxidation of As(III) during Fh recrystallization. Thus, this study provided new insights into the role of TC on the migration and transformation of As coupled with Fe in soils.


Assuntos
Arsênio , Antibacterianos , Arsênio/química , Compostos Férricos/química , Compostos Ferrosos , Oxirredução , Oxigênio , Tetraciclina
16.
Inorg Chem ; 61(13): 5184-5189, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319886

RESUMO

All lead-free inorganic halide perovskites, as efficient solid-state light emission materials, have become ideal green optoelectronic materials to replace lead halide perovskites for diversified lighting and display applications with their excellent stability. Here, we investigated the pressure-derived optical and structural response of a zero-dimensional lead-free perovskite Rb7Sb3Cl16 through applying controllable pressure. A pressure-induced blue shift of the broadband emission was achieved, and it was followed by the emission color transformation from yellow to green, which was ascribed to the electron-phonon coupling weakening and the suppression of structural deformation upon lattice contraction. In parallel, the band gap was narrowed by about 0.5 eV as a result of enhanced metal halide orbital overlap under high pressure. This work provides a fundamental understanding for modulating the optical properties of the low-dimensional metal halide perovskites.

17.
Sci Total Environ ; 811: 152283, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34902411

RESUMO

Tetracycline (TC), a widely used antibiotic, is frequently detected in soil environments. It has a strong tendency to form complexes with metals, including iron (oxyhydr)oxide. In this study, ferrihydrite (Fh), a representative iron oxyhydroxide of the iron plaques on the surface of plant roots, was chosen to study the contributions of iron oxyhydroxide on the environmental fate of TC in the rhizosphere environment. Fh adsorption isotherm of TC showed good fitting to the Freundlich model, and the Fh adsorption capacity of TC was found much larger than the other iron oxyhydroxide of high crystallinity. The adsorption mechanisms mainly included electrostatic interaction, H-bonding, and complexation. The results of FTIR and XPS spectra revealed that tricarbonylamide, dimethylamino, and the hydroxyl in the B ring of TC were mainly responsible for the complexation with Fh surface hydroxyl groups. Furthermore, it should be noted that the adsorbed TC on Fh could be degraded and the degradation kinetics of TC better fitted to the pseudo-second-order model. Fh could promote electron transfer from TC to Fe(III) on the Fh surface, which led to the degradation of TC and the formation of Fe(II) ions. The degradation pathways of TC mainly involved three reactions: hydroxylation, dealkylation, and deamination. This study provides mechanistic insights on TC-Fh interaction, which improves the understanding of TC fate in the rhizosphere environment.


Assuntos
Compostos Férricos , Tetraciclina , Adsorção , Antibacterianos
18.
J Pharmacol Sci ; 146(4): 216-225, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116735

RESUMO

We aim to explore the effects of emodin and its mechanisms on renal fibrosis (RF). We firstly modeled adriamycin-induced rat RF with unilateral nephrectomy. In vivo and in vitro pharmacological experiments were performed in this study. The presence of collagen deposition was detected by Masson staining. To verify whether emodin attenuates RF by monitoring autophagy, the immunohistochemistry staining for autophagy protein LC3B was performed. We conducted western blot to detect the expression of the autophagy-related proteins in EMT in vitro model after treating with emotin and BMP-7. In vivo, we demonstrated that emodin could improve renal dysfunction and decrease pathological damage of the kidney by activation of autophagy and inhibition of EMT. Upregulation of BMP-7 was recorded in the RF rats subjected to emodin treatment. In vitro studies, emodin has the capacity of reversing EMT and activating autophagy, and emodin could regulate the expression of BMP-7. The results revealed that the attenuation of EMT by emodin could be blocked after the inhibition of BMP-7 and suppression of autophagy. Our findings demonstrated that emodin alleviates EMT during RF by actuating autophagy through BMP-7, suggesting a role of BMP-7 in RF treatment and prevention.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Proteína Morfogenética Óssea 7/metabolismo , Emodina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Fibrose , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
19.
Oncol Lett ; 21(5): 379, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777203

RESUMO

Renal cell carcinoma is one of the most malignant cancers, with limited prognostic prediction system. The present study aimed to determine the prognostic value of novel von Hippel-Lindau (VHL) substrate targets in predicting the outcome of clear cell renal cell carcinoma (ccRCC). A total of 97 patients with ccRCC were enrolled in the present study, and the tissue microarray that was constructed using 97 ccRCC samples was used for immunohistochemical analysis. Univariate and multivariate Cox regression analyses were performed to determine the independent prognostic factors. Reverse transcription-quantitative PCR analysis demonstrated that the mRNA expression levels of scm-like with four malignant brain tumor domains (SFMBT1) and zinc fingers and homeoboxes 2 (ZHX2) were upregulated in cancer tissues compared with adjacent normal tissues. Among the 97 patients with ccRCC, SFMBT1 expression was upregulated in 61.9% (60/97), while ZHX2 expression was upregulated in 52.6% (51/97). Overall survival (OS) and disease-free survival (DFS) analyses indicated that SFMBT1 or ZHX2 alone were of limited predictive value; however, the combined expression of these two targets (high SFMBT1 and high ZHX2 expression, SHZH group) was significantly associated with OS (P=0.0350) and DFS (P=0.0434). In addition, multivariate analysis identified SHZH as an independent prognostic factor in patients with ccRCC. Taken together, these results suggest that SFMBT1 and ZHX2 act as novel substrate targets of VHL and, to the best of our knowledge, the present study was the first to provide insight on the co-expression of these two targets in representing a promising biomarker to predict the outcome of patients with ccRCC.

20.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32363205

RESUMO

BACKGROUND: We aimed to investigate the epidemiological and clinical features, and medical care-seeking process of patients with the 2019 coronavirus disease (COVID-19) in Wuhan, China, to provide useful information to contain COVID-19 in other places with similar outbreaks of the virus. METHODS: We collected epidemiological and clinical information of patients with COVID-19 admitted to a makeshift Fangcang hospital between 7 and 26 February, 2020. The waiting time of each step during the medical care-seeking process was also analysed. RESULTS: Of the 205 patients with COVID-19 infection, 31% had presumed transmission from a family member. 10% of patients had hospital-related transmission. It took as long as a median of 6 days from the first medical visit to receive the COVID-19 nucleic acid test and 10 days from the first medical visit to hospital admission, indicating early recognition of COVID-19 was not achieved at the early stage of the outbreak, although these delays were shortened later. After clinical recovery from COVID-19, which took a mean of 21 days from illness onset, there was still a substantial proportion of patients who had persistent SARS-CoV-2 infection. CONCLUSIONS: The diagnostic evaluation process of suspected patients needs to be accelerated at the epicentre of the outbreak and early isolation of infected patients in a healthcare setting rather than at home is urgently required to stop the spread of the virus. Clinical recovery is not an appropriate criterion to release isolated patients and as long as 4 weeks' isolation for patients with COVID-19 is not enough to prevent the spread of the virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...