Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
ACS Appl Mater Interfaces ; 16(28): 36577-36585, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38972068

RESUMO

Tin oxide is a promising channel material, offering the advantages of being low-cost and environmentally friendly and having a wide band gap. However, despite the high electron mobility of SnO2 in bulk, the corresponding thin-film transistors (TFTs) generally exhibit moderate performance, hindering their widespread application. Herein, we proposed a codoping strategy to improve both the electrical property and the stability of SnO2 TFTs. A comparative analysis between doped and undoped SnO2 was conducted. It is observed that taking advantage of the difference in ionic radii between two dopants (indium and gallium) and the tin ions in the host lattice can effectively reduce impurity-induced strain. Additionally, we investigated the effect of codoping content on SnO2 TFTs. The optimal codoped SnO2 (TIGO) TFTs demonstrate high performance, featuring a field-effect mobility of 15.9 cm2/V·s, a threshold voltage of 0.2 V, a subthreshold swing of 0.5 V/decade, and an on-to-off current ratio of 2.2 × 107. Furthermore, the devices show high stability under both positive and negative bias stress conditions with a small threshold voltage shift of 1.8 and -1.2 V, respectively. Utilizing the TIGO TFTs, we successfully constructed a resistor-loaded unipolar inverter with a high gain of 10.76. This study highlights the potential of codoped SnO2 TFTs for advanced applications in electronic devices.

2.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2871-2881, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041146

RESUMO

To investigate the effects of different ratios of organic and chemical fertilizers on the yield and quality of Epimedium pubescens,so as to provide a scientific basis for the fertilization of high-yield and high-quality E. pubescens cultivation. In this experiment,a field plot test was conducted,and CK(without fertilizer) was set as the control group,with five treatment groups with different ratios of organic fertilizers and chemical fertilizers set up,namely OF0(100% chemical fertilizers),OF25(25% organic fertilizers),OF50(50% organic fertilizers),OF75(75% organic fertilizers),and OF100(100% organic fertilizers). The effects of different fertilization patterns on the agronomic traits,yield,effective component content,nutrient accumulation,and soil physicochemical properties of E. pubescens were determined,and the yield and quality of the medicinal herb were comprehensively evaluated by using the CRITIC weights method. It was found that the herb yield of each treatment group was significantly increased compared with the CK group,although the yield of the groups with both organic fertilizer and chemical fertilizer was slightly lower than that of OF0. However,there was no significant difference,which indicated that the organic fertilizer combined with chemical fertilizer could ensure the herb yield. With the increase in organic fertilizer ratios,the medicinal components epimedin A,epimedin B,and epimedin C showed a tendency of first increasing and then decreasing,with the highest content in the OF25,while icariin showed a rising trend,with the best in the OF100. However,overall,the total flavonol glycosides ABCI accumulated the most in the OF25. The results of the CRITIC method showed that the top three fertilization treatments in terms of the comprehensive scores of the medicinal herb were OF25,OF50,and OF75. Organic fertilizer combined with chemical fertilizer is conducive to improving the soil's fertilizer holding and supply capacity,and the soil indexes are optimal in OF100. The soil enzyme activity is the highest in OF75. Meanwhile,organic fertilizer combined with chemical fertilizer can help the plant's uptake and accumulation of nutrients,and OF25 shows the most obvious effect.By comprehensively considering the influence of different ratios of organic and chemical fertilizers on the yield,effective component content,nutrient accumulation,and other indexes of E. pubescens,it is recommended that a 25% ratio(7 500 kg·hm~(-2)) of organic fertilizers and chemical fertilizers should be used in E. pubescens production in the first year,so as to promote the E. pubescens industry to increase yield and improve quality.


Assuntos
Epimedium , Fertilizantes , Fertilizantes/análise , Epimedium/química , Epimedium/crescimento & desenvolvimento , Solo/química , Nitrogênio/metabolismo , Nitrogênio/análise , Controle de Qualidade
3.
Angew Chem Int Ed Engl ; : e202410525, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041715

RESUMO

Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host-guest recognition phenomena are observed between 7 and ferrocene, forming host-guest complexes with a 1:1 stoichiometry in MeCN. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370-500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 µmol), generation rate (11 µmol/h), turnover number (221), and apparent quantum yield (1.7%), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.

4.
Crit Care ; 28(1): 225, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978111

RESUMO

BACKGROUND: The precise identification of the underlying causes of infectious diseases, such as severe pneumonia, is essential, and the development of next-generation sequencing (NGS) has enhanced the effectiveness of pathogen detection. However, there is limited information on the systematic assessment of the clinical use of targeted next-generation sequencing (tNGS) in cases of severe pneumonia. METHODS: A retrospective analysis was conducted on 130 patients with severe pneumonia treated in the ICU from June 2022 to June 2023. The consistency of the results of tNGS, metagenomics next-generation sequencing (mNGS), and culture with the clinical diagnosis was evaluated. Additionally, the results for pathogens detected by tNGS were compared with those of culture, mNGS, and quantitative reverse transcription PCR (RT-qPCR). To evaluate the efficacy of monitoring severe pneumonia, five patients with complicated infections were selected for tNGS microbiological surveillance. The tNGS and culture drug sensitisation results were then compared. RESULTS: The tNGS results for the analysis of the 130 patients showed a concordance rate of over 70% with clinical diagnostic results. The detection of pathogenic microorganisms using tNGS was in agreement with the results of culture, mNGS, and RT-qPCR. Furthermore, the tNGS results for pathogens in the five patients monitored for complicated infections of severe pneumonia were consistent with the culture and imaging test results during treatment. The tNGS drug resistance results were in line with the drug sensitivity results in approximately 65% of the cases. CONCLUSIONS: The application of tNGS highlights its promise and significance in assessing the effectiveness of clinical interventions and providing guidance for anti-infection therapies for severe pneumonia.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Pneumonia , Humanos , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos
5.
ACS Appl Mater Interfaces ; 16(30): 39437-39446, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031502

RESUMO

MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P-Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P-Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g-1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g-1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.

6.
Nano Lett ; 24(30): 9311-9321, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39023921

RESUMO

The doping of perovskites with mixed cations and mixed halides is an effective strategy to optimize phase stability. In this study, we introduce a cubic black phase perovskite CsyFA(1-y)Pb(BrxI(1-x))3 artificial synapse, using phase engineering by adjusting the cesium-bromide content. Low-bromine mixed perovskites are suitable to improve the electric pulse excitation sensitivity and stability of the device. Specifically, the low-bromine and low-cesium mixed perovskite (x = 0.15, y = 0.22) annealed at 373 K allows the device to maintain logic response even after 1000 mechanical flex/flat cycles. The device also shows good thermal stability up to temperatures of 333 K. We have demonstrated reflex-arc behavior with MCMHP synaptic units, capable of making sensory warnings at high frequency. This compositionally engineered, dual-mixed perovskite synaptic device provides significant potential for perceptual soft neurorobotic systems and prostheses.

7.
Bioact Mater ; 37: 106-118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022616

RESUMO

Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment, which remains an unmet clinical challenge. Herein, an injectable Tetra-PEG hydrogel that possesses rapid gelation, firm tissue adhesion, high mechanical strength, suitable degradability, and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets. Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing. In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy, wound closure, alveolar ridge preservation, and in situ alveolar bone regeneration. Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation, elevated collagen deposition, higher osteoblast activity, and enhanced angiogenesis. Together, our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing.

8.
ACS Omega ; 9(27): 29857-29869, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005772

RESUMO

Amomum tsao-ko Crevost et Lemaire (A. tsao-ko) is widely grown for its high nutritional and economic value. However, the lack of a scientific harvesting and quality control system has resulted in an uneven product quality. The present study was based on A. tsao-ko from four maturity stages from the same growing area, and its chemical trends and quality were evaluated using a combination of agronomic trait analysis, spectroscopy, chromatography, chemometrics, and network pharmacology. The results showed that A. tsao-ko was phenotypically dominant in October. Spectroscopy showed that the absorbance intensity at different maturity stages showed a trend of October > September > August > July. Further chemical differences between A. tsao-ko at different stages of maturity were found by chromatography to originate mainly from alcohol, aromatic, acids, esters, hydrocarbons, ketone, heterocyclic, and aldehydes. The network pharmacology results showed that the active ingredient for the treatment of obesity was present in A. tsao-ko and had high levels in A. tsao-ko in September and October. The results of this study provide a new idea for the comprehensive evaluation of A. tsao-ko and a theoretical basis for the harvesting and resource utilization of A. tsao-ko.

9.
Biodivers Data J ; 12: e115975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841136

RESUMO

Background: Wood-rotting fungi as an important group within the Basidiomycota are known for their ecological role in the forest ecosystem in terms of decaying living and dead trees and recycling nutrients in forest ecosystems. Many new species were revealed in the last five years. In the present study, during an ongoing study on Scytinostroma, a new species of Scytinostroma was found from China. It is described and illustrated on the basis of the morphological and phylogenetic evidence. New information: Scytinostromabambusinum sp. nov. is described as a new species, based on morphological and molecular evidence. It is characterised by annual, resupinate and broadly ellipsoid basidiomata with white to cream hymenophore, a dimitic hyphal structure with generative hyphae bearing simple septa, the presence of cystidioles and amyloid basidiospores measuring 5.5-7 × 4-5.3 µm. Phylogeny, based on molecular data of ITS and nLSU sequences, shows that the new species forms an independent lineage and is different in morphology from the existing species of Scytinostroma.

10.
Biology (Basel) ; 13(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927332

RESUMO

H. perforatum, as one of the Traditional Chinese Medicinal materials, possesses a variety of pharmacological activities and high medicinal value. However, in recent years, the wild resources of H. perforatum have been severely depleted due to global climate change and human activities, and artificial cultivation faces problems such as unstable yield and active ingredient content. This poses a serious obstacle to the development and utilization of its resources. Therefore, this experiment took H. perforatum as the research object and used 894 distribution records of H. perforatum and 36 climatic environmental factors, using the MaxEnt model and GIS technology to explore the main climatic factors affecting the distribution of H. perforatum. Additionally, by utilizing the principles of ecological niche theory, the potential suitable distribution regions of H. perforatum across past, present, and future timelines were predicted, which can ascertain the dynamics of its spatial distribution patterns and the trend of centroid migration. The results indicate that the main environmental factors affecting the geographical distribution of H. perforatum are solar radiation in April (Srad4), solar radiation in September (Srad9), mean temperature of driest quarter (Bio9), solar radiation in November (Srad11), annual mean temperature (Bio1), and annual precipitation (Bio12). Under future climate scenarios, there is a remarkable trend of expansion in the suitable distribution areas of H. perforatum. The centroid migration indicates a trend of migration towards the northwest direction and high-altitude areas. These results can provide a scientific basis for formulating conservation and sustainable use management strategies for H. perforatum resources.

11.
Adv Mater ; : e2404811, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875445

RESUMO

Uncontrolled bleeding and wound infections following severe trauma pose significant challenges for existing tissue adhesives, primarily due to their weak wet adhesion, slow adhesion formation, cytotoxicity concerns, and lack of antibacterial properties. Herein, an injectable hydrogel (denoted as ES gel) with rapid, robust adhesive sealing and inherent antibacterial activity based on ε-polylysine and a poly(ethylene glycol) derivative is developed. The engineered hydrogel exhibits rapid gelation behavior, high mechanical strength, strong adhesion to various tissues, and can sustain an ultrahigh burst pressure of 450 mmHg. It also presents excellent biocompatibility, biodegradability, antibacterial properties, and on-demand removability. Significantly improved hemostatic efficacy of ES gel compared to fibrin glue is demonstrated using various injury models in rats and rabbits. Remarkably, the adhesive hydrogel can effectively halt lethal non-compressible hemorrhages in visceral organs (liver, spleen, and heart) and femoral artery injury models in fully anticoagulated pigs. Furthermore, the hydrogel outperforms commercial products in sutureless wound closure and repair in the rat liver defect, skin incision, and infected full-thickness skin wound models. Overall, this study highlights the promising clinical applications of ES gel for managing uncontrolled hemorrhage, sutureless wound closure, and infected wound repair. This article is protected by copyright. All rights reserved.

12.
Sci Total Environ ; 946: 174187, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936741

RESUMO

Nutrient requirement for crop growth, defined as the amount of nutrient that crops take up from soil to produce a specific grain yield, is a key parameter in determining fertilizer application rate. However, existing studies primarily focus on identifying nitrogen (N), phosphorus (P), and potassium (K) requirements solely in relation to grain yield, neglecting grain protein content, a crucial index for wheat grain quality. Addressing this gap, we conducted multi-site, multi-cultivar, and multi-year field trials across three ecological regions of China from 2016 to 2020 to elucidate variations in nutrient requirements for grain yield and grain protein. The research findings revealed that wheat grain yield ranged from 4.1 to 9.3 Mg ha-1 (average 6.9 Mg ha-1) and grain protein content ranged from 98 to 157 g kg-1 (average 127 g kg-1) across the three regions. Notably, the N requirement exhibited a nonlinear correlation with the wheat grain yield but a linear increase with increasing grain protein, while the P and K requirements positively correlated with grain yield and protein content. Regression models were formulated to determine the nutrient requirements (MENR), enabling the prediction of N, P, and K requirements for leading cultivars with varying grain yields and protein contents. Implementing nutrient requirements based on MENR projections resulted in substantial reductions in fertilizer rates: 22.0 kg ha-1 N (10.7 %), 9.9 kg ha-1 P (20.2 %), and 8.1 kg ha-1 K (16.3 %). This translated to potential savings of 0.4 Mt. N, 0.23 Mt. P, and 0.17 Mt. K, consequently mitigating 5.5 Mt. CO2 greenhouse-gas emission and yielding an economic benefit of 0.8 billion US$ annually in China. These findings underscore the significance of considering grain yield and protein content in estimating nutrient requirements for fertilizer recommendations to realize high-yielding, high-protein wheat production, and minimize overfertilization and associated environmental risks.


Assuntos
Grão Comestível , Fertilizantes , Nitrogênio , Fósforo , Potássio , Triticum , China , Nitrogênio/análise , Potássio/análise , Potássio/metabolismo , Fósforo/análise , Grão Comestível/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Agricultura/métodos , Nutrientes/análise
13.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905297

RESUMO

Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.


Assuntos
Plantas Geneticamente Modificadas , Populus , Populus/genética , Populus/microbiologia , Plantas Geneticamente Modificadas/genética , Filogenia , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Família Multigênica , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo
14.
Mikrochim Acta ; 191(6): 353, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809482

RESUMO

Organic pollutant detection has caused widespread concern regarding due to their potential environmental and human health risks. In this work, a nitrogen-doped titanium dioxide/silver oxide (N-TiO2/Ag2O) composite has been designed as a sensitive photoelectrochemical (PEC) monitoring platform of organic dyes. Sensitive determination relies on the outstanding PEC performance of N-TiO2/Ag2O. The improved PEC performance stems from the effective separation of photocarriers and the extended light response range provided by the narrowing bandgap and a p-n junction with N-TiO2/Ag2O. The N-TiO2/Ag2O electrode exhibits a photocurrent density of up to 2.2 mA/cm2, demonstrating three times increase compared with the photocurrent density observed with the pure TiO2 film. The linear detection range for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) is 0.2 ng/mL to 10 µg/mL with an ultrasensitive detection limit of 0.2 ng/mL without bias voltage. Due to the outstanding photocurrent density and sensitive response to organic pollutants, the N-TiO2/Ag2O PEC sensor provided a promising analytical method to detect environmental organic dyes.

15.
Mater Horiz ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787754

RESUMO

Simulation of synaptic characteristics is essential for the application of organic field effect transistors (OFETs) in neural morphology. Although excellent performance, including bias stability and mobility, as well as photoelectric pulse synaptic simulation, has been achieved in SiO2-gated OFETs with PDVT-10 as an organic channel, there are relatively few studies on photoelectric pulse synaptic simulation of electrolyte-gated OFETs based on environmentally friendly and low-voltage operation. Herein, synaptic transistors based on organic semiconductors are reported to simulate the photoelectric pulse response by developing solution-based organic semiconductor PDVT-10, and polyvinyl alcohol (PVA) with an electric double layer (EDL) effect to act as a channel and gate dielectric layer, respectively, and organic lithium salt-doped PVA is used to enhance the EDL effect. The presence of electrical pulses in doped devices not only achieves basic electrical synaptic characteristics, but also significantly realizes the long-term characteristics, pain perception, memory and sensitization applications. Furthermore, the introduction of photoinitiator molecules into the channel layer leads to improved photosynaptic performances by using light-induced free radicals, and the photoelectric synergistic effect has been actualized by introducing heterojunction architecture. This work provides promising prospects for achieving photoelectric pulse modulation based on organic synaptic devices, which shows great potential for the development of artificial intelligence.

16.
Technol Health Care ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38820027

RESUMO

BACKGROUND: Currently, surgery is the mainstay of the clinical treatment of vestibular migraine. OBJECTIVE: To investigate the clinical efficacy and safety of using transesophageal echocardiography-guided interventional closure of the patent foramen ovale (PFO) in the treatment of vestibular migraine. METHODS: The study included 52 patients with vestibular migraine who were admitted to our hospital between June 2019 and June 2021. All selected patients underwent a transesophageal echocardiography-guided interventional closure of the PFO and were followed up for one year after surgery. We observed the clinical efficacy and surgical success rate one year after surgery and compared the improvement in clinical symptoms and perioperative safety at different time points. RESULTS: The overall remission rate and the surgical success rate for the 52 patients with vestibular migraine one year after surgery were 86.54% and 96.15%, respectively. Compared to the pre-surgery levels, there was a significant progressively decreasing trend in the scores on the Headache Impact Test-6 (HIT-6), Visual Analogue Scale (VAS), Migraine Disability Assessment (MIDAS) questionnaire, frequency of headaches, and duration of headaches in patients with vestibular migraine at 1, 3, and 6 months after surgery (P< 0.05). Among the 52 patients, one developed atrial fibrillation three hours after surgery, which then spontaneously converted to sinus rhythm, and none of the other patients had adverse outcomes such as hematoma at the puncture site during the perioperative period. CONCLUSION: Transesophageal echocardiography-guided interventional closure of the PFO for treating vestibular migraine significantly improved the symptoms of migraine in patients, with a high surgical success rate, significant clinical efficacy, and favorable safety.

17.
Adv Mater ; : e2400933, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801772

RESUMO

Photodynamic therapy (PDT) continues to encounter multifarious hurdles, stemming from the ineffectual preservation and delivery system of photosensitizers, the dearth of imaging navigation, and the antioxidant/hypoxic tumor microenvironment. Herein, a versatile cryomicroneedle patch (denoted as CMN-CCPH) is developed for traceable PDT. The therapeutic efficacy is further amplified by catalase (CAT)-induced oxygen (O2) generation and Cu2+-mediated glutathione (GSH) depletion. The CMN-CCPH is composed of cryomicroneedle (CMN) as the vehicle and CAT-biomineralized copper phosphate nanoflowers (CCP NFs) loaded with hematoporphyrin monomethyl ether (HMME) as the payload. Importantly, the bioactive function of HMME and CAT can be optimally maintained under the protection of CCPH and CMN for a duration surpassing 60 days, leading to bolstered bioavailability and notable enhancements in PDT efficacy. The in vivo visualization of HMME and oxyhemoglobin saturation (sO2) monitored by fluorescence (FL)/photoacoustic (PA) duplex real-time imaging unveils the noteworthy implications of CMN-delivered CCPH for intratumoral enrichment of HMME and O2 with reduced systemic toxicity. This versatile CMN patch demonstrates distinct effectiveness in neoplasm elimination, underscoring its promising clinical prospects.

18.
Angew Chem Int Ed Engl ; 63(32): e202407923, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38738617

RESUMO

Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.

19.
Angew Chem Int Ed Engl ; 63(25): e202405427, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38603586

RESUMO

Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.

20.
Integr Zool ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597117

RESUMO

Golden snub-nosed monkeys show inconsistent frequency of placentophagy between wild and captive populations, with almost all births in the wild but around half of the births in captivity accompanied by the female's consumption of placenta. This aligns with nutritional demands-driven placentophagy, as captive populations are generally under less nutritional constraints for breeding females than the wild population. Placentophagy is probably adaptive in the wild and under positive selection due to nutritional benefits to both mothers and infants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...