Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000525

RESUMO

Abiotic stress, especially drought stress, poses a significant threat to terrestrial plant growth, development, and productivity. Although mulberry has great genetic diversity and extensive stress-tolerant traits in agroforestry systems, only a few reports offer preliminary insight into the biochemical responses of mulberry leaves under drought conditions. In this study, we performed a comparative metabolomic and transcriptomic analysis on the "drooping mulberry" (Morus alba var. pendula Dippel) under PEG-6000-simulated drought stress. Our research revealed that drought stress significantly enhanced flavonoid accumulation and upregulated the expression of phenylpropanoid biosynthetic genes. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content were elevated. In vitro enzyme assays and fermentation tests indicated the involvement of flavonol synthase/flavanone 3-hydroxylase (XM_010098126.2) and anthocyanidin 3-O-glucosyltransferase 5 (XM_010101521.2) in the biosynthesis of flavonol aglycones and glycosides, respectively. The recombinant MaF3GT5 protein was found to recognize kaempferol, quercetin, and UDP-glucose as substrates but not 3-/7-O-glucosylated flavonols and UDP-rhamnose. MaF3GT5 is capable of forming 3-O- and 7-O-monoglucoside, but not di-O-glucosides, from kaempferol. This implies its role as a flavonol 3, 7-O-glucosyltransferase. The findings from this study provided insights into the biosynthesis of flavonoids and could have substantial implications for the future diversified utilization of mulberry.


Assuntos
Secas , Flavonoides , Regulação da Expressão Gênica de Plantas , Morus , Folhas de Planta , Proteínas de Plantas , Morus/genética , Morus/metabolismo , Flavonoides/metabolismo , Flavonoides/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Perfilação da Expressão Gênica , Quempferóis/metabolismo , Oxigenases de Função Mista , Oxirredutases
3.
Steroids ; 208: 109450, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823755

RESUMO

Breast cancer ranks as the most prevalent malignancy, presenting persistent therapeutic challenges encompassing issues such as drug resistance, recurrent occurrences, and metastatic progression. Therefore, there is a need for targeted drugs that are less toxic and more effective against breast cancer. Kuwanon C, an isoamylated flavonoid derived from mulberry resources, has shown promise as a potential candidate due to its strong cytotoxicity against cancer cells. The present study focused on investigating the anticancer activity of kuwanon C in two human breast cancer cell lines, MDA-MB231 and T47D cells. MTS assay results indicated a decrease in cell proliferation with increasing concentrations of kuwanon C. Furthermore, kuwanon C upregulated the expression levels of the cyclin-dependent kinase inhibitor p21 and effectively inhibited cell DNA replication and induced DNA damage. Flow cytometry confirmed that kuwanon C induced cell apoptosis and upregulated the expression levels of pro-apoptotic proteins (Bax and c-caspase3). Additionally, it stimulated the production of reactive oxygen species (ROS) in the cells. Transmission electron microscopy and Fluo-4 AM-calcium ion staining experiments provided insights into the endoplasmic reticulum (ER), revealing that kuwanon C induced ER stress. Kuwanon C upregulated the expression levels of unfolded protein response-related proteins (ATF4, GADD34, HSPA5, and DDIT3). Overall, the present findings suggested that kuwanon C exerts a potent inhibitory effect on breast cancer cell proliferation through modulating of the p21, induction of mitochondrial-mediated apoptosis, activation of ER stress and induction of DNA damage. These results position kuwanon C as a potential targeted therapeutic agent for breast cancer.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Chaperona BiP do Retículo Endoplasmático , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Flavonoides/química , Transdução de Sinais/efeitos dos fármacos
4.
Physiol Plant ; 176(2): e14309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659152

RESUMO

Although microRNAs (miRNAs) regulate the defense response of a variety of plant species against a variety of pathogenic fungi, the involvement of miRNAs in mulberry's defense against Botrytis cinerea has not yet been documented. In this study, we identified responsive B. cinerea miRNA mno-miR164a in mulberry trees. After infection with B. cinerea, the expression of mno-miR164a was reduced, which was fully correlated with the upregulation of its target gene, MnNAC100, responsible for encoding a transcription factor. By using transient infiltration/VIGS mulberry that overexpressed mno-miR164a or knocked-down MnNAC100, our study revealed a substantial enhancement in mulberry's resistance to B. cinerea when mno-miR164a was overexpressed or MnNAC100 expression was suppressed. This enhancement was accompanied by increased catalase (CAT) activity and reduced malondialdehyde (MDA) content. In addition, mno-miR164a-mediated inhibition of MnNAC100 enhanced the expression of a cluster of defense-related genes in transgenic plants upon exposure to B. cinerea. Meanwhile, MnNAC100 acts as a transcriptional repressor, directly suppressing the expression of MnPDF1.2. Our study indicated that the mno-miR164a-MnNAC100 regulatory module manipulates the defense response of mulberry to B. cinerea infection. This discovery has great potential in breeding of resistant varieties and disease control.


Assuntos
Botrytis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , MicroRNAs , Morus , Doenças das Plantas , Proteínas de Plantas , Morus/genética , Morus/microbiologia , Botrytis/fisiologia , Botrytis/patogenicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas , Malondialdeído/metabolismo
5.
Pest Manag Sci ; 80(6): 2860-2873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375972

RESUMO

BACKGROUND: Adaptation of specialist insects to their host plants and defense responses of plants to phytophagous insects have been extensively recognized while the dynamic interaction between these two events has been largely underestimated. Here, we provide evidence for characterization of an unrevealed dynamic interaction mode of digestive enzymes of specialist insect silkworm and inhibitor of its host plant mulberry tree. RESULTS: MnKTI-1, a mulberry Kunitz-type protease inhibitor, whose messenger RNA (mRNA) transcription and protein expression in mulberry leaf were severely triggered and up-regulated by tens of times in a matter of hours in response to silkworm, Bombyx mori, and other mulberry pest insects, suggesting a quick response and broad spectrum to insect herbivory. MnKTI-1 proteins were detected in gut content and frass of specialist B. mori, and exhibited significant post-ingestive stability. Recombinant refolded MnKTI-1 (rMnKTI-1) displayed binding affinity to digestive enzymes and a dual inhibitory activity to α-amylase BmAmy and serine protease BmSP2956 in digestive juice of silkworm. Moreover, data from in vitro assays proved that the inhibition of recombinant rMnKTI-1 to BmAmy can be reverted by pre-incubation with BmSP15920, an inactivated silkworm digestive protease that lack of complete catalytic triad. CONCLUSION: These findings demonstrate that mulberry MnKTI-1 has the potential to inhibit the digestive enzyme activities of its specialist insect herbivore silkworm, whereas this insect may employ inactivated proteases to block protease inhibitors to accomplish food digestion. The current work provides an insight to better understand the interacting mode between host plant Kunitz protease inhibitors and herbivorous insect digestive enzymes. © 2024 Society of Chemical Industry.


Assuntos
Bombyx , Morus , Proteínas de Plantas , alfa-Amilases , Animais , Bombyx/enzimologia , Morus/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Serina Proteases/metabolismo , Serina Proteases/química , Serina Proteases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/antagonistas & inibidores , Herbivoria , Larva/enzimologia , Larva/crescimento & desenvolvimento , Peptídeos
6.
Int J Biol Macromol ; 259(Pt 2): 129077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199542

RESUMO

Plant-derived miRNAs and their interactions with host organisms are considered important factors in regulating host physiological processes. In this study, we investigated the interaction between the silkworm, an oligophagous insect, and its primary food source, mulberry, to determine whether mulberry-derived miRNAs can penetrate silkworm cells and regulate their functions. Our results demonstrated that miR168a from mulberry leaves enters the silkworm hemolymph and binds to the silkworm Argonaute1 BmAGO1, which is transported via vesicles secreted by silkworm cells to exert its regulatory functions. In vivo and in vitro functional studies revealed that miR168a targets the mRNA of silkworm G protein-coupled receptor, BmMthl1, thereby inhibiting its expression and activating the JNK-FoxO pathway. This activation reduces oxidative stress responses, prolongs the lifespan of silkworms, and improves their reproductive capacity. These findings highlight the challenges of replacing mulberry leaves with alternative protein sources and provide a foundation for developing silkworm germplasms suitable for factory rearing.


Assuntos
Bombyx , MicroRNAs , Morus , Animais , Bombyx/metabolismo , Morus/genética , Morus/química , Frutas , MicroRNAs/genética , MicroRNAs/metabolismo , Fertilidade/genética
7.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
8.
Hortic Res ; 10(7): uhad111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37786730

RESUMO

Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, Morus notabilis, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that M. notabilis is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.

9.
BMC Plant Biol ; 23(1): 428, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710184

RESUMO

BACKGROUND: Mulberry (Morus spp.) is an economically important woody plant, which has been used for sericulture (silk farming) for thousands of years. The genetic background of mulberry is complex due to polyploidy and frequent hybridization events. RESULTS: Comparative genomic in situ hybridization (cGISH) and self-GISH were performed to illustrate the chromosome constitution and genetic relationships of 40 mulberry accessions belonging to 12 species and three varietas in the Morus genus and containing eight different ploidy levels. We identified six homozygous cGISH signal patterns and one heterozygous cGISH signal pattern using four genomic DNA probes. Using cGISH and self-GISH data, we defined five mulberry sections (Notabilis, Nigra, Wittiorum, and Cathayana, all contained only one species; and Alba, which contained seven closely related species and three varietas, was further divided into two subsections) and proposed the genetic relationships among them. Differential cGISH signal patterns detected in section Alba allowed us to refine the genetic relationships among the closely related members of this section. CONCLUSIONS: We propose that GISH is an efficient tool to investigate the chromosome constitution and genetic relationships in mulberry. The results obtained here can be used to guide outbreeding of heterozygous perennial crops like mulberry.


Assuntos
Morus , Morus/genética , Genômica , Hibridização In Situ , Agricultura , Cromossomos
10.
Plant Physiol ; 192(2): 1307-1320, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36800200

RESUMO

As the prevalence of diabetes continues to increase, the number of individuals living with diabetes complications will reach an unprecedented magnitude. Continuous use of some synthetic agents to reduce blood glucose levels causes severe side effects, and thus, the demand for nontoxic, affordable drugs persists. Naturally occurring compounds, such as iminosugars derived from the mulberry (Morus spp.), have been shown to reduce blood glucose levels. In mulberry, 1-deoxynojirimycin (DNJ) is the predominant iminosugar. However, the mechanism underlying DNJ biosynthesis is not completely understood. Here, we showed that DNJ in mulberry is derived from sugar and catalyzed through 2-amino-2-deoxy-D-mannitol (ADM) dehydrogenase MnGutB1. Combining both targeted and nontargeted metabolite profiling methods, DNJ and its precursors ADM and nojirimycin (NJ) were quantified in mulberry samples from different tissues. Purified His-tagged MnGutB1 oxidized the hexose derivative ADM to form the 6-oxo compound DNJ. The mutant MnGutB1 D283N lost this remarkable capability. Furthermore, in contrast to virus-induced gene silencing of MnGutB1 in mulberry leaves that disrupted the biosynthesis of DNJ, overexpression of MnGutB1 in hairy roots and light-induced upregulation of MnGutB1 enhanced DNJ accumulation. Our results demonstrated that hexose derivative ADM, rather than lysine derivatives, is the precursor in DNJ biosynthesis, and it is catalyzed by MnGutB1 to form the 6-oxo compound. These results represent a breakthrough in producing DNJ and its analogs for medical use by metabolic engineering or synthetic biology.


Assuntos
1-Desoxinojirimicina , Morus , Humanos , Glicemia , Frutas , Oxirredutases , Folhas de Planta/genética
11.
Front Plant Sci ; 13: 1047592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507423

RESUMO

Mulberry (genus Morus) is an economically important woody plant with an altered ploidy level. The variable number of Morus species recognized by different studies indicates that the genus is in need of revision. In this study, the chloroplast (CP) genomes of 123 Morus varieties were de novo assembled and systematically analyzed. The 123 varieties represented six Morus species, namely, Morus alba, Morus nigra, Morus notabilis, Morus rubra, Morus celtidifolia, and Morus serrata. The Morus CP genome was found to be 158,969~159,548 bp in size with 125 genes, including 81 protein coding, 36 tRNA, and 8 rRNA genes. The 87 out of 123 mulberry accessions were assigned to 14 diverse groups with identical CP genome, which indicated that they are maternally inherited and share 14 common ancestors. Then 50 diverse CP genomes occurred in 123 mulberry accessions for further study. The CP genomes of the Morus genus with a quadripartite structure have two inverted repeat (IR) regions (25,654~25,702 bp) dividing the circular genome into a large single-copy (LSC) region (87,873~88,243 bp) and small single-copy (SSC) region (19,740~19,994 bp). Analysis of the phylogenetic tree constructed using the complete CP genome sequences of Morus revealed a monophyletic genus and that M. alba consisted of two clades, M. alba var. alba and M. alba var. multicaulis. The Japanese cultivated germplasms were derived from M. alba var. multicaulis. We propose that the Morus genus be classified into six species, M. nigra, M. notabilis, M. serrata, M. celtidifolia, M. rubra, and M. alba with two subspecies, M. alba var. alba and M. alba var. multicaulis. Our findings provide a valuable resource for the classification, domestication, and breeding improvement of mulberry.

12.
Proc Biol Sci ; 289(1985): 20221427, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36285499

RESUMO

Gustatory systems in phytophagous insects are used to perceive feeding stimulants and deterrents, and are involved in insect decisions to feed on particular plants. During the process, gustatory receptors (Grs) can recognize diverse phytochemicals and provide a molecular basis for taste perception. The silkworm, as a representative Lepidoptera species, has developed a strong feeding preference for mulberry leaves. The mulberry-derived flavonoid glycoside, isoquercetin, is required to induce feeding behaviours. However, the corresponding Grs for isoquercetin and underlying molecular mechanisms remain unclear. In this study, we used molecular methods, voltage clamp recordings and feeding assays to identify silkworm BmGr63, which was tuned to isoquercetin. The use of qRT-PCR confirmed that BmGr63 was highly expressed in the mouthpart of fourth and fifth instar larvae. Functional analysis showed that oocytes expressing BmGr63 from the 'bitter' clade responded to mulberry extracts. Among 20 test chemicals, BmGr63 specifically recognized isoquercetin. The preference for isoquercetin was not observed in BmGr63 knock-down groups. The tuning between BmGr63 and isoquercetin has been demonstrated, which is meaningful to explain the silkworm-mulberry feeding mechanism from molecular levels and thus provides evidence for further feeding relationship studies between phytophagous insects and host plants.


Assuntos
Bombyx , Proteínas de Drosophila , Morus , Animais , Bombyx/fisiologia , Paladar , Receptores de Superfície Celular , Insetos , Plantas , Flavonoides , Glicosídeos
13.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163065

RESUMO

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcription factors, play important roles in plant developmental regulation and stress response adaptation. Although mulberry is a commercially valuable tree species, there have been few systematic studies on SPL genes. In this work, we identified 15 full-length SPL genes in the mulberry genome, which were distributed on 4 Morus notabilis chromosomes. Phylogenetic analysis clustered the SPL genes from five plants (Malus × domestica Borkh, Populus trichocarpa, M. notabilis, Arabidopsis thaliana, and Oryza sativa) into five groups. Two zinc fingers (Zn1 and Zn2) were found in the conserved SBP domain in all of the MnSPLs. Comparative analyses of gene structures and conserved motifs revealed the conservation of MnSPLs within a group, whereas there were significant structure differences among groups. Gene quantitative analysis showed that the expression of MnSPLs had tissue specificity, and MnSPLs had much higher expression levels in older mulberry leaves. Furthermore, transcriptome data showed that the expression levels of MnSPL7 and MnSPL14 were significantly increased under silkworm herbivory. Molecular experiments revealed that MnSPL7 responded to herbivory treatment through promoting the transcription of MnTT2L2 and further upregulating the expression levels of catechin synthesis genes (F3'H, DFR, and LAR).


Assuntos
Bombyx/fisiologia , Catequina/biossíntese , Morus/parasitologia , Fatores de Transcrição/genética , Regulação para Cima , Animais , Mapeamento Cromossômico , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Herbivoria , Morus/genética , Família Multigênica , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética
14.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043186

RESUMO

Mulberry (Morus spp.) is an economically important plant as the main food plant used for rearing domesticated silkworm and it has multiple uses in traditional Chinese medicine. Two basic chromosome numbers (Morus notabilis, n = 7, and Morus alba, n = 14) have been reported in the genus Morus, but the evolutionary history and relationship between them remain unclear. In the present study, a 335-Mb high-quality chromosome-scale genome was assembled for the wild mulberry species M. notabilis. Comparative genomic analyses indicated high chromosomal synteny between the 14 chromosomes of cultivated M. alba and the six chromosomes of wild M. notabilis. These results were successfully verified by fluorescence in situ hybridization. Chromosomal fission/fusion events played crucial roles in the chromosome restructuring process between M. notabilis and M. alba. The activity of the centromere was another key factor that ensured the stable inheritance of chromosomes. Our results also revealed that long terminal repeat retrotransposons were a major driver of the genome divergence and evolution of the mulberry genomes after they diverged from each other. This study provides important insights and a solid foundation for studying the evolution of mulberry, allowing the accelerated genetic improvement of cultivated mulberry species.

15.
Hortic Res ; 8(1): 154, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193838

RESUMO

DNA methylation has been proposed to regulate plant stress resistance. However, the dynamic changes in DNA methylation in woody plants and their correlations with pathogenic responses are not fully understood. Here, we present single-base maps of the DNA methylomes of mulberry (Morus notabilis) leaves that were subjected to a mock treatment or inoculation with Botrytis cinerea. Compared with the former, the latter showed decreased mCG and mCHG levels and increased mCHH levels. DNA methylation inhibitors reduced resistance gene methylation levels and enhanced mulberry resistance, suggesting that the hypomethylation of resistance genes affects mulberry resistance to B. cinerea. Virus-induced gene silencing of MnMET1 enhanced the expression of mulberry-resistance genes, thereby increasing the plant's resistance to B. cinerea. We also found that MITEs play a dominant role in controlling DNA methylation levels. MITEs appear to be the main sources of 24-nt siRNAs that regulate gene expression through the RNA-directed DNA methylation pathway.

16.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074049

RESUMO

The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.


Assuntos
Envelhecimento/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Morus/metabolismo , Proteínas de Plantas/metabolismo , Envelhecimento/genética , Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Hydrastis/genética , Hydrastis/metabolismo , MicroRNAs/genética , Morus/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
17.
Commun Biol ; 4(1): 491, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888855

RESUMO

Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-ß-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.


Assuntos
Escamas de Animais/química , Bombyx/química , Proteínas de Insetos/química , Proteínas/química , Asas de Animais/química , Escamas de Animais/efeitos dos fármacos , Animais , Bombyx/efeitos dos fármacos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Asas de Animais/efeitos dos fármacos
18.
Front Plant Sci ; 12: 658590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889168

RESUMO

Ciboria carunculoides is the dominant causal agent of mulberry sclerotial disease, and it is a necrotrophic fungal pathogen with a narrow host range that causes devastating diseases in mulberry fruit. However, little is known about the interaction between C. carunculoides and mulberry. Here, our transcriptome sequencing results showed that the transcription of genes in the secondary metabolism and defense-related hormone pathways were significantly altered in infected mulberry fruit. Due to the antimicrobial properties of proanthocyanidins (PAs), the activation of PA biosynthetic pathways contributes to defense against pathogens. Salicylic acid (SA) and jasmonic acid (JA) are major plant defense hormones. However, SA signaling and JA signaling are antagonistic to each other. Our results showed that SA signaling was activated, while JA signaling was inhibited, in mulberry fruit infected with C. carunculoides. Yet SA mediated responses are double-edged sword against necrotrophic pathogens, as SA not only activates systemic acquired resistance (SAR) but also suppresses JA signaling. We also show here that the small secreted protein CcSSP1 of C. carunculoides activates SA signaling by targeting pathogenesis-related protein 1 (PR1). These findings reveal that the infection strategy of C. carunculoides functions by regulating SA signaling to inhibit host defense responses.

19.
Front Plant Sci ; 11: 1142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849701

RESUMO

Terpenoids are considered to be the largest group of secondary metabolites and natural products. Studies have revealed 1-deoxy-D-xylulose 5-phosphate synthase (DXS) is the first and rate-limiting enzyme in the plastidial methylerythritol phosphate pathway, which produces isopentenyl diphosphate and its isoform dimethylallyl diphosphate as terpenoid biosynthesis precursors. Mulberry (Morus L.) is an economically and ecologically important perennial tree with diverse secondary metabolites, including terpenoids that protect plants against bacteria and insects and may be useful for treating human diseases. However, there has been relatively little research regarding DXS genes in mulberry and other woody plant species. In this study, we cloned and functionally characterized three Morus notabilis DXS genes (MnDXS1, MnDXS2A, and MnDXS2B). Bioinformatics analyses indicated MnDXS1 belongs to clade 1, whereas MnDXS2A and MnDXS2B are in clade 2. The three encoded MnDXS proteins are localized to chloroplasts. Additionally, substantial differences in MnDXS expression patterns were observed in diverse tissues and in response to insect feeding and methyl jasmonate treatment. Moreover, overexpression of MnDXS1 in Arabidopsis thaliana increased the gibberellic acid content and resulted in early flowering, whereas overexpression of MnDXS2A enhanced root growth and increased the chlorophyll and carotenoid content. Our findings indicate that MnDXS functions vary among the clades, which may be useful for further elucidation of the functions of the DXS genes in mulberry.

20.
J Exp Bot ; 71(20): 6571-6586, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32720987

RESUMO

The acquisition of new metabolic activities is a major force driving evolution. We explored, from the perspectives of gene family expansion and the evolutionary adaptability of proteins, how new functions have arisen in which terpene synthases diverged. Monoterpenoids are diverse natural compounds that can be divided into cyclic and acyclic skeleton forms according to their chemical structure. We demonstrate, through phylogenetic reconstructions and genome synteny analyses, that the (E)-ß-ocimene synthases, which are acyclic monoterpene synthases (mTPSs), appear to have arisen several times in independent lineages during plant evolution. Bioinformatics analyses and classical mutation experiments identified four sites (I388, F420, S446, and F485) playing important roles in the neofunctionalization of mTPSs. Incubation of neryl diphosphate with Salvia officinalis 1,8-cineole synthase (SCS) and mutated proteins show that these four sites obstruct the isomerization of geranyl diphosphate. Quantum mechanical/molecular mechanical molecular dynamics simulations of models of SCS, SCSY420F/I446S, and SCSN338I/Y420F/I446S/L485F with (3R)-linalyl diphosphate suggest that mutations changed the configuration of the intermediate to obtain new activities. These results provide new perspectives on the evolution of mTPSs, explain the convergent evolution of (E)-ß-ocimene synthases at the molecular level, and identify key residues to control the specificity of engineered mTPSs.


Assuntos
Alquil e Aril Transferases , Magnoliopsida , Monoterpenos Acíclicos , Alcenos , Alquil e Aril Transferases/genética , Magnoliopsida/genética , Monoterpenos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...