Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172365, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641118

RESUMO

Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.


Assuntos
Cádmio , Eucalyptus , Chumbo , Mineração , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Chumbo/análise , Poluentes do Solo/análise , Cádmio/análise , Microbiota , Fertilizantes , Bactérias , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental
2.
Plant Mol Biol ; 103(4-5): 409-423, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189187

RESUMO

Cotton fibers are initiated from the epidermal cells of the ovule before or on the day of anthesis. Gossypium arboreum SMA-4 mutant contains recessive mutation (sma-4(ha)) and has the phenotypes of fibreless seeds and glabrous stems. In this study, fine mapping and alternative splicing analysis indicated a nucleotide substitution (AG → AC) at splicing site in a homeodomain-leucine zipper IV family gene (GaHD1) might cause gene A3S (Alternative 3' splicing) mistake, suggested that GaHD1 was the candidate gene of sma-4(ha). Many genes related to the fiber initiation are identified to be differentially expressed in the mutant which could result in the blocked fiber initiation signals such as H2O2, or Ca in the mutant. Further comparative physiological analysis of H2O2 production and Ca2+ flux in the SMA-4 and wide type cotton confirmed that H2O2 and Ca were important fiber initiation signals and regulated by GaHD1. The in vitro ovule culture of the mutant with hormones recovered the fibered phenotype coupled with the restoration of these signals. Overexpressing of GaHD1 in Arabidopsis increased trichome densities on the sepal, leaf, and stem tissues while transient silencing of the GaHD1 gene in G. arboreum reduced the trichome densities. These phenotypes indicated that GaHD1 is the candidate gene of SMA-4 with a crucial role in acting upstream molecular switch of signal transductions for cotton trichome and fiber initiations.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/fisiologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Tricomas/crescimento & desenvolvimento , Processamento Alternativo , Sinalização do Cálcio , Mapeamento Cromossômico , Cromossomos de Plantas , Fibra de Algodão , Ligação Genética , Gossypium/genética , Mutação , Proteínas de Plantas/genética
3.
Gene ; 738: 144455, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061763

RESUMO

DELLA proteins are members of the plant-specific GRAS family, acting as negative regulators of plant growth. In this study, we identified two DELLA protein-coding genes in litchi, denoted as LcGAI and LcRGL1. Motif analysis showed that LcGAI and LcRGL1 proteins both contain a conserved DELLA and TVHYNP motif at the N-terminus as well as LHR1, VHIID, LHR2, PFYRE, and SAW motifs at the C terminus. The fused proteins of LcGAI-GFP and LcRGL1-GFP were both localized in the nucleus. Overexpression of LcGAI and LcRGL1 in Arabidopsis substantially inhibits leaf growth. Expression analysis showed that HLH factors, PRE1 and PRE5, were restrained, whereas gibberellin (GA) receptors GID1a and LcGID1b were enhanced in LcGAI and LcRGL1 overexpression lines. Results of the yeast two-hybrid assay showed that LcGAI and LcRGL1 interact with LcGID1b/LcGID1c in a GA dose-dependent manner, whereas LcGAI and LcRGL1 had a greater binding capacity to LcGID1b than LcGID1c. These observations suggested that LcGAI and LcRGL1 proteins are nuclear growth repressors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Litchi/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
4.
Genetics ; 201(1): 143-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26133897

RESUMO

Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion.


Assuntos
Genes Homeobox , Gossypium/genética , Proteínas de Plantas/genética , Retroelementos/genética , Mapeamento Cromossômico , Especiação Genética , Zíper de Leucina , Mutagênese Insercional , Fenótipo , Proteínas de Plantas/química , Caules de Planta/genética
5.
Mol Genet Genomics ; 290(6): 2199-211, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26037218

RESUMO

Ligon lintless-1 (Li1) is a Gossypium hirsutum mutant that is controlled by a dominant gene that arrests the development of cotton fiber after anthesis. Two F2 mapping populations were developed from mutant (Li1 × H7124) F1 plants in 2012 and 2013; each was composed of 142 and 1024 plants, respectively. Using these populations, Li1 was mapped to a 0.3-cM region in which nine single-strand conformation polymorphism markers co-segregated with the Li1 locus. In the published G. raimondii genome, these markers were mapped to a region of about 1.2 Mb (the Li1 region) and were separated by markers that flanked the Li1 locus in the genetic map, dividing the Li1 region into three segments. Thirty-six genes were annotated by the gene prediction software FGENESH (Softberry) in the Li1 region. Twelve genes were candidates of Li1, while the remaining 24 genes were identified as transposable elements, DNA/RNA polymerase superfamily or unknown function genes. Among the 12 candidate genes, those encoding ribosomal protein s10, actin protein, ATP synthase, and beta-tubulin 5 were the most-promising candidates of the Li1 mutant because the function of these genes is closely related to fiber development. High-throughput RNA sequencing and quantitative PCR revealed that these candidate genes had obvious differential gene expression between mutant and wild-type plants at the fiber elongation stage, strengthening the inference that they could be the most likely candidate gene of the Li1 mutant phenotype.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Gossypium/genética , Mutação , Perfilação da Expressão Gênica
6.
Plant Cell Rep ; 34(6): 1037-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25693493

RESUMO

KEY MESSAGE: A transcriptionally active Ty1/copia -like retrotransposon was identified in the genome of Gossypium barbadense. The different heat activation of this element was observed in two tetraploid cotton species. Most retrotransposons from plants are transcriptionally silent, or activated under certain conditions. Only a small portion of elements are transcriptionally active under regular condition. A long terminal repeat (LTR) retrotransposon was isolated from the cultivated Sea Island cotton (H7124) genome during the investigation of the function of a homeodomain leucine zipper gene (HD1) in trichome growth. Insertion of this element in HD1 gene of At sub-genome was related to the trichomeless stem in Gossypium barbadense. The element, named as GBRE-1, had all features of a typical Ty1/copia retrotransposon and possessed high similarity to the members of ONSEN retrotransposon family. It was 4997 bp long, comprising a single 4110 bp open reading frame, which encoded 1369 amino acids including the conserved domains of gag and pol. The expression of GBRE-1 was detected under regular condition in G. barbadense and G. hirsutum, and its expression level was increased under heat-stress condition in G. hirsutum. Besides, its expression pattern was similar to that of the ONSEN retrotransposon. Abundant cis-regulatory motifs related to stress-response and transcriptional regulation were found in the LTR sequence. These results suggested that GBRE-1 was a transcriptionally active retrotransposon in Gossypium. To our knowledge, this is the first report of the isolation of a complete Ty1/copia-type retrotransposon with present-day transcriptional activity in cotton.


Assuntos
Gossypium/genética , Retroelementos/genética , Sequência de Aminoácidos , Sequência de Bases , Diploide , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Temperatura Alta , Dados de Sequência Molecular , Filogenia , Sequências Reguladoras de Ácido Nucleico , Sequências Repetidas Terminais
7.
Gene ; 535(2): 273-85, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24279997

RESUMO

Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.


Assuntos
Fibra de Algodão , Perfilação da Expressão Gênica , Genes de Plantas , Gossypium/genética , Gossypium/metabolismo , Mutação , Folhas de Planta/genética , Transdução de Sinais , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Fenótipo , Folhas de Planta/metabolismo
8.
BMC Plant Biol ; 12: 85, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694895

RESUMO

BACKGROUND: In plants, sucrose synthase (Sus) is widely considered as a key enzyme involved in sucrose metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, while limited information of Sus genes is available to date for cotton. RESULTS: Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression profiles of seven Sus genes (GaSus1 to 7) identified from diploid fiber cotton (Gossypium arboreum). Comparisons between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus introns are highly conserved among Sus genes in cotton and other more distantly related plant species. Phylogenetic analysis showed that GaSus1, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a dicot Sus group, while GaSus6 and GaSus7 were separated evenly into other two groups, with members from both dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2, of which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development-dependent expression profiles in cotton fiber cells. CONCLUSIONS: This is a comprehensive study of the Sus gene family in cotton plant. The results presented in this work provide new insights into the evolutionary conservation and sub-functional divergence of the cotton Sus gene family in response to cotton fiber growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Glucosiltransferases/genética , Gossypium/enzimologia , Gossypium/genética , Família Multigênica , Filogenia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sequência Conservada/genética , DNA Complementar/genética , Diploide , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genes de Plantas/genética , Íntrons/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...