Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 6677-6692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975322

RESUMO

Background: The inadequate perfusion, frequently resulting from abnormal vascular configuration, gives rise to tumor hypoxia. The presence of this condition hinders the effective delivery of therapeutic drugs and the infiltration of immune cells into the tumor, thereby compromising the efficacy of treatments against tumors. The objective of this study is to exploit the thermal effect of ultrasound (US) in order to induce localized temperature elevation within the tumor, thereby facilitating vasodilation, augmenting drug delivery, and enhancing immune cell infiltration. Methods: The selection of US parameters was based on intratumor temperature elevation and their impact on cell viability. Vasodilation and hypoxia improvement were investigated using enzyme-linked immunosorbent assay (ELISA) and immunofluorescence examination. The distribution and accumulation of commercial pegylated liposomal doxorubicin (PLD) and PD-L1 antibody (anti-PD-L1) in the tumor were analyzed through frozen section analysis, ELISA, and in vivo fluorescence imaging. The evaluation of tumor immune microenvironment was conducted using flow cytometry (FCM). The efficacy of US-enhanced chemotherapy in combination with immunotherapy was investigated by monitoring tumor growth and survival rate after various treatments. Results: The US irradiation condition of 0.8 W/cm2 for 10 min effectively elevated the tumor temperature to approximately 40 °C without causing any cellular or tissue damage, and sufficiently induced vasodilation, thereby enhancing the distribution and delivery of PLD and anti-PD-L1 in US-treated tumors. Moreover, it effectively mitigated tumor hypoxia while significantly increasing M1-phenotype tumor-associated macrophages (TAMs) and CD8+ T cells, as well as decreasing M2-phenotype TAMs. By incorporating US irradiation, the therapeutic efficacy of PLD and anti-PD-L1 was substantially boosted, leading to effective suppression of tumor growth and prolonged survival in mice. Conclusion: The application of US (0.8 W/cm2 for 10 min) can effectively induce vasodilation and enhance the delivery of PLD and anti-PD-L1 into tumors, thereby reshaping the immunosuppressive tumor microenvironment and optimizing therapeutic outcomes.


Assuntos
Doxorrubicina , Imunoterapia , Polietilenoglicóis , Microambiente Tumoral , Animais , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Antígeno B7-H1 , Feminino , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Inibidores de Checkpoint Imunológico/farmacologia , Ondas Ultrassônicas , Terapia Combinada
2.
Pest Manag Sci ; 80(8): 3873-3883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511764

RESUMO

BACKGROUND: Pine wood nematode (PWN; Bursaphelenchus xylophilus) is the causative agent of pine wilt disease (PWD), which is considered the most dangerous biohazard to conifer trees globally. The transmission of PWN relies on insect vectors, particularly the Japanese pine sawyer (JPS; Monochamus alternatus). However, the molecular mechanism underlying PWN-JPS assembly remains largely unknown. RESULTS: Here, we found that both geographical and gender could significantly affect the PCA (PWN carrying amount) of JPS; thus, JPS transcriptomes from diverse locations and genders were explored regard to PWN loading. Due to the shortage of genomes, we developed a full-length reference transcriptome for analyzing next-generation sequencing data. A comparative genomic study was performed, and 11 248 potential PWN-carrying associate genes (ß) were nominated in JPS by using the reported genomes of PWN and non-PWN carrier insect species. Then, 151 differentially expressed transcripts (DETs), 28 of them overlapped with ß, correlated with the PCA of JPS were nominated by RNA-Seq, and found that fatty acid ß-oxidation might be the key factor that affected the PCA of JPS. Furthermore, JPS fatty acid ß-oxidation rates were experimentally decreased using the inhibitor Etomoxir, leading to an increased PCA of JPS. Meanwhile, silencing MaCPT1 in JPS by RNA interference led to a decreased fatty acid ß-oxidation rate and increased PCA of JPS. CONCLUSIONS: In conclusion, MaCPT1 was able to decrease the PWN-JPS assembly formation through the fatty acid ß-oxidation of JPS. These results provide new insights for exploring the impact of PWN invasion on JPS. © 2024 Society of Chemical Industry.


Assuntos
Genômica , Transcriptoma , Tylenchida , Animais , Feminino , Masculino , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Tylenchida/fisiologia
3.
Nat Commun ; 15(1): 2505, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509082

RESUMO

Achieving high selectivity of Li+ and Mg2+ is of paramount importance for effective lithium extraction from brines, and nanofiltration (NF) membrane plays a critical role in this process. The key to achieving high selectivity lies in the on-demand design of NF membrane pores in accordance with the size difference between Li+ and Mg2+ ions, but this poses a huge challenge for traditional NF membranes and difficult to be realized. In this work, we report the fabrication of polyamide (PA) NF membranes with ultra-high Li+/Mg2+ selectivity by modifying the interfacial polymerization (IP) process between piperazine (PIP) and trimesoyl chloride (TMC) with an oil-soluble surfactant that forms a monolayer at oil/water interface, referred to as OSARIP. The OSARIP benefits to regulate the membrane pores so that all of them are smaller than Mg2+ ions. Under the solely size sieving effect, an exceptional Mg2+ rejection rate of over 99.9% is achieved. This results in an exceptionally high Li+/Mg2+ selectivity, which is one to two orders of magnitude higher than all the currently reported pressure-driven membranes, and even higher than the microporous framework materials, including COFs, MOFs, and POPs. The large enhancement of ion separation performance of NF membranes may innovate the current lithium extraction process and greatly improve the lithium extraction efficiency.

4.
Front Bioeng Biotechnol ; 11: 1226426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469445

RESUMO

Purpose: Poly (lactic-co-glycolic acid)-based nanoparticles (PLGA NPs) have been widely used as the carrier for sustainable drug delivery. However, the drug release from the NPs was usually incomplete and uncontrollable. Herein, a low intensity pulsed ultrasound (LIPUS) assisted SDF-1/BMP-2@nanoparticles (S/B@NPs) system was fabricated to facilitate stem cell recruitment-osteogenesis for periodontal bone regeneration. Methods: In this work, S/B@NPs were prepared with double-emulsion synthesis method. Then the S/B release profile from NPs was evaluated with or without low intensity pulsed ultrasound treatment. Afterwards, the stem cell recruiting and osteoinductive capacities of LIPUS-S/B@NPs were detected with human periodontal ligament cells (hPDLCs) in vitro and in a rat periodontal bone defect model. Results: The results indicated that S/B@NPs were successfully prepared and LIPUS could effectively regulate the release of S/B and increase their final releasing amount. Moreover, LIPUS-S/B@NPs system significantly promoted hPDLCs migrating and osteogenesis in vitro and recruiting rBMSCs to the rat periodontal defect and facilitated bone regeneration in vivo. Conclusion: Our LIPUS assisted S/B@NPs system can effectively facilitate stem cell recruitment and periodontal bone regeneration. Considering its reliable safety and therapeutic effect on bone fracture, LIPUS, as an adjuvant therapy, holds great potential in the regulation of drug delivery systems for bone healing.

5.
J Nanobiotechnology ; 21(1): 209, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408010

RESUMO

BACKGROUND: Radiotherapy (RT) is one of the most mainstream cancer therapeutic modalities. However, due to the lack of specificity of the radiation adopted, both normal and cancerous cells are destroyed indiscriminately. This highlights the crucial need to improve radiosensitization. This study aims to address this issue by constructing a multifunctional nanospheres that can sensitize multiple aspects of radiotherapy. RESULTS: Nanospheres containing high atomic element Bi can effectively absorb ionizing radiation and can be used as radiosensitizers. Cell viability after Bi2S3 + X-ray treatment was half that of X-ray treatment alone. On the other hand, exposed 3-bromopyruvate (3BP) could reduce the overactive oxygen (O2) metabolism of tumor cells and alleviate tumor hypoxia, thereby promoting radiation-induced DNA damage. The combination index (CI) of 3BP and Bi2S3-based RT in Bi2S3-3BP + X-ray was determined to be 0.46 with the fraction affected (fa) was 0.5 via Chou-Talalay's isobolographic method, which indicated synergistic effect of 3BP and Bi2S3-based RT after integration into Bi2S3-3BP + X-ray. Under the combined effect of 3BP and RT, autophagy was over-activated through starvation-induced and redox homeostasis dysregulation pathways, which in turn exhibited pro-death effects. In addition, the prepared nanospheres possess strong X-ray attenuation and high near-infrared (NIR) optical absorption, thus eliminating the need for additional functional components and could serve as bimodal contrast agents for computed tomography/photoacoustic (CT/PA) imaging. CONCLUSIONS: The rational design of multifunctional nanospheres with the unique properties provided a novel strategy to achieving high therapeutic efficacy in RT. This was accomplished through simultaneous activation of multiple sensitization pathways by increasing ionizing radiation, reducing tumor oxygen consumption, inducing pro-death autophagy, and providing multiple-imaging guidance/monitoring.


Assuntos
Nanosferas , Neoplasias , Linhagem Celular Tumoral , Sulfetos/farmacologia , Bismuto/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
6.
Int J Nanomedicine ; 18: 3109-3124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323948

RESUMO

Background: Breast cancer has become the most common cancer in women. Compare with other subtypes of breast cancer, triple-negative breast cancer (TNBC) is more likely to relapse and metastasize. Highly effective therapeutic strategies are desperately needed to be explored. In this study, a multifunctional nanoplatform is expected to mediate chemo-photothermal therapy, which can combine immunogenic cell death with checkpoint blockade to combat TNBC and distant metastasis. Methods: Poly (lactic acid-glycolic acid)-Poly (ethylene glycol) (PLGA-PEG) nanoparticles (NPs), a type of polymeric NPs, loaded with IR780, a near-infrared (NIR) dye, and doxorubicin (DOX) as the chemotherapeutic drug, were assembled by an improved double emulsification method (designated as IDNPs). The characterization, intracellular uptake, biosafety, photoacoustic (PA) imaging performance, and biodistribution of IDNPs were studied. Chemo-photothermal therapeutic effect and immunogenic cell death (ICD) were evaluated both in vitro and in vivo. The potency of chemo-photothermal therapy-triggered ICD in combination with anti-PD-1 immune checkpoint blockade (ICB) immunotherapy in eliciting immune response and treating distant tumors was further investigated. Results: IR780 and DOX were successfully loaded into PLGA-PEG to form the IDNPs, with size of 243.87nm and Zeta potential of -6.25mV. The encapsulation efficiency of IR780 and DOX was 83.44% and 5.98%, respectively. IDNPs demonstrated remarkable on-site accumulation and PA imaging capability toward 4T1 TNBC models. Chemo-photothermal therapy demonstrated satisfactory therapeutic effects both in vitro and in vivo, and triggered ICD efficiently. ICD, in combination with anti-PD-1, provoked a systemic antitumor immune response against distant tumors. Conclusion: Multifunctional IDNPs were successfully synthesized to mediate chemo-photothermal therapy, which combines immunogenic cell death with checkpoint blockade to combat TNBC and distant metastasis, showing great promise preclinically and clinically.


Assuntos
Hipertermia Induzida , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Terapia Fototérmica , Fototerapia/métodos , Distribuição Tecidual , Morte Celular Imunogênica , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia
7.
Ultrasound Med Biol ; 49(1): 368-374, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283937

RESUMO

In patients with breast cancer undergoing anthracycline-based chemotherapy, we investigated the deformational parameters of the left ventricle, right ventricle and left atrium, as well as the relationship between these parameters. Ninety-five patients with breast cancer who were treated with anthracycline-based chemotherapy were enrolled. The control group included 116 healthy female volunteers. Parameters including left ventricular global longitudinal strain (LV-GLS); right ventricular free wall longitudinal strain (RVFWSL) and global longitudinal strain (RV4CSL); and peak strain of the left atrium during LV systole (LASR), early LV diastole (LASCD) and late LV diastole (LASCT) were analyzed by speckle tacking echocardiography. LV-GLS, LASR, LASCD, RVFWSL and RV4CSL in the chemotherapy group decreased significantly by 15.6%, 13.8%, 19.8%, 21.8% and 13.2% (p < 0.05), respectively, when compared with the control group. LASCT was slightly increased in the chemotherapy group but the increase was not statistically significant (p > 0.05). Formulas for the influencing factors of LV-GLS were LV-GLS = -18.73738541 + 0.13961 × LVIDd + 0.09672 × LASCD + 0.18113 × RVFWSL in the control group and LV-GLS = -8.026302253 + 0.20811 × LASCD + 0.11084 × LASCT + 0.12153 × RVFWSL in the chemotherapy group. Both LV contraction and RV contraction were impaired after the completion of anthracycline-based therapy, and RVFWSL may be superior to LV-GLS in assessing cardiotoxicity. LA reserve and channel function were significantly reduced, while pump function was slightly increased. Compared with the results among healthy people, the influencing factor of LV-GLS varied after anthracycline treatment, and LA function had a greater impact on LV-GLS.


Assuntos
Neoplasias da Mama , Disfunção Ventricular Esquerda , Humanos , Feminino , Antraciclinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Disfunção Ventricular Esquerda/diagnóstico por imagem , Antibióticos Antineoplásicos/uso terapêutico , Ventrículos do Coração/diagnóstico por imagem , Átrios do Coração , Tecnologia , Função Ventricular Esquerda
8.
J Nanobiotechnology ; 20(1): 378, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964037

RESUMO

BACKGROUND: Low-intensity pulsed ultrasound (LIPUS) has been reported to accelerate fracture healing, but the mechanism is unclear and its efficacy needs to be further optimized. Ultrasound in combination with functionalized microbubbles has been shown to induce local shear forces and controllable mechanical stress in cells, amplifying the mechanical effects of LIPUS. Nanoscale lipid bubbles (nanobubbles) have high stability and good biosafety. However, the effect of LIPUS combined with functionalized nanobubbles on osteogenesis has rarely been studied. RESULTS: In this study, we report cyclic arginine-glycine-aspartic acid-modified nanobubbles (cRGD-NBs), with a particle size of ~ 500 nm, able to actively target bone marrow mesenchymal stem cells (BMSCs) via integrin receptors. cRGD-NBs can act as nanomechanical force generators on the cell membrane, and further enhance the BMSCs osteogenesis and bone formation promoted by LIPUS. The polymerization of actin microfilaments and the mechanosensitive transient receptor potential melastatin 7 (TRPM7) ion channel play important roles in BMSCs osteogenesis promoted by LIPUS/cRGD-NBs. Moreover, the mutual regulation of TRPM7 and actin microfilaments promote the effect of LIPUS/cRGD-NBs. The extracellular Ca2 + influx, controlled partly by TRPM7, could participated in the effect of LIPUS/cRGD-NBs on BMSCs. CONCLUSIONS: The nanomechanical force generators cRGD-NBs could promote osteogenesis of BMSCs and bone formation induced by LIPUS, through regulation TRPM7, actin cytoskeleton, and intracellular calcium oscillations. This study provides new directions for optimizing the efficacy of LIPUS for fracture healing, and a theoretical basis for the further application and development of LIPUS in clinical practice.


Assuntos
Células-Tronco Mesenquimais , Canais de Cátion TRPM , Citoesqueleto de Actina , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Canais de Cátion TRPM/metabolismo , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...