Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Structure ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39013461

RESUMO

Two structures of fructose 6-phosphate aldolase, the wild-type and an engineered variant containing five active-site mutations, have been solved by cryoelectron microscopy (cryo-EM). The engineered variant affords production of aldols from aryl substituted ketones and aldehydes. This structure was solved to a resolution of 3.1 Å and contains the critical iminium reaction intermediate trapped in the active site. This provides new information that rationalizes the acquired substrate scope and aids in formulating hypotheses of the chemical mechanism. A Tyr residue (Y131) is positioned for a role as catalytic acid/base during the aldol reaction and the different structures demonstrate mobility of this amino acid residue. Further engineering of this fructose 6-phosphate aldolase (FSA) variant, guided by this new structure, identified additional FSA variants that display improved carboligation activities with 2-hydroxyacetophenone and phenylacetaldehyde.

2.
Protein Sci ; 33(7): e5063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864729

RESUMO

Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.


Assuntos
Chaperonas Moleculares , Domínios Proteicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Sítios de Ligação , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
3.
J Biol Chem ; 300(2): 105622, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176647

RESUMO

Pandemic Pseudomonas aeruginosa clone C strains encode two inner-membrane associated ATP-dependent FtsH proteases. PaftsH1 is located on the core genome and supports cell growth and intrinsic antibiotic resistance, whereas PaftsH2, a xenolog acquired through horizontal gene transfer from a distantly related species, is unable to functionally replace PaftsH1. We show that purified PaFtsH2 degrades fewer substrates than PaFtsH1. Replacing the 31-amino acid-extended linker region of PaFtsH2 spanning from the C-terminal end of the transmembrane helix-2 to the first seven highly divergent residues of the cytosolic AAA+ ATPase module with the corresponding region of PaFtsH1 improves hybrid-enzyme substrate processing in vitro and enables PaFtsH2 to substitute for PaFtsH1 in vivo. Electron microscopy indicates that the identity of this linker sequence influences FtsH flexibility. We find membrane-cytoplasmic (MC) linker regions of PaFtsH1 characteristically glycine-rich compared to those from FtsH2. Consequently, introducing three glycines into the membrane-proximal end of PaFtsH2's MC linker is sufficient to elevate its activity in vitro and in vivo. Our findings establish that the efficiency of substrate processing by the two PaFtsH isoforms depends on MC linker identity and suggest that greater linker flexibility and/or length allows FtsH to degrade a wider spectrum of substrates. As PaFtsH2 homologs occur across bacterial phyla, we hypothesize that FtsH2 is a latent enzyme but may recognize specific substrates or is activated in specific contexts or biological niches. The identity of such linkers might thus play a more determinative role in the functionality of and physiological impact by FtsH proteases than previously thought.


Assuntos
Proteases Dependentes de ATP , Proteínas de Bactérias , Pseudomonas aeruginosa , Sequência de Aminoácidos , Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo
4.
Commun Biol ; 6(1): 497, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156997

RESUMO

ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.


Assuntos
Amiloide , Agregados Proteicos , Amiloide/metabolismo , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Proteínas Amiloidogênicas , Interações Hidrofóbicas e Hidrofílicas
5.
RSC Chem Biol ; 3(11): 1342-1358, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349220

RESUMO

Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.

6.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35943803

RESUMO

Huntington's disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.


Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Animais , Caspase 6 , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Isoformas de Proteínas/genética , Proteólise , Distribuição Tecidual
7.
J Mol Biol ; 433(18): 167114, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34161779

RESUMO

Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Nucleossomos , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Arginina/química , Arginina/genética , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Conformação Proteica , Homologia de Sequência
9.
EMBO J ; 39(24): e106807, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33196145

RESUMO

Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) "domain". Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo-electron microscopy study of uromodulin (UMOD)/Tamm-Horsfall protein, the most abundant protein in human urine and an archetypal ZP module-containing molecule, in its mature homopolymeric state. UMOD forms a one-start helix with an unprecedented 180-degree twist between subunits enfolded by interdomain linkers that have completely reorganized as a result of propeptide dissociation. Lateral interaction between filaments in the urine generates sheets exposing a checkerboard of binding sites to capture uropathogenic bacteria, and UMOD-based models of heteromeric vertebrate egg coat filaments identify a common sperm-binding region at the interface between subunits.


Assuntos
Polímeros/química , Uromodulina/química , Zona Pelúcida/química , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica/métodos , Feminino , Humanos , Polimerização , Polímeros/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Uromodulina/genética , Uromodulina/metabolismo , Zona Pelúcida/metabolismo
10.
Sci Rep ; 10(1): 18150, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097779

RESUMO

Natural products have played a dominant role in the discovery of lead compounds for the development of drugs aimed at the treatment of human diseases. This electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS)-based study demonstrates that dietary antioxidants, isolated components from the stigmas of saffron (Crocus sativus L.) may be effective in inhibiting Aß fibrillogenesis, a neuropathological hallmark of Alzheimer's Disease (AD). This study reveals a substantial alteration in the monomer/oligomer distribution of Aß1-40, concomitant with re-direction of fibril formation, induced by the natural product interaction. These alterations on the Aß1-40 aggregation pathway are most prominent for trans-crocin-4 (TC4). Use of ESI-IMS-MS, electron microscopy alongside Thioflavin-T kinetics, and the interpretation of 3-dimensional Driftscope plots indicate a correlation of these monomer/oligomer distribution changes with alterations to Aß1-40 amyloid formation. The latter could prove instrumental in the development of novel aggregation inhibitors for the prevention, or treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Crocus/química , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Carotenoides/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Agregação Patológica de Proteínas/patologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
11.
Structure ; 28(9): 1035-1050.e8, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668197

RESUMO

The polyQ expansion in huntingtin protein (HTT) is the prime cause of Huntington's disease (HD). The recent cryoelectron microscopy (cryo-EM) structure of HTT-HAP40 complex provided the structural information on its HEAT-repeat domains. Here, we present analyses of the impact of polyQ length on the structure and function of HTT via an integrative structural and biochemical approach. The cryo-EM analysis of normal (Q23) and disease (Q78) type HTTs shows that the structures of apo HTTs significantly differ from the structure of HTT in a HAP40 complex and that the polyQ expansion induces global structural changes in the relative movements among the HTT domains. In addition, we show that the polyQ expansion alters the phosphorylation pattern across HTT and that Ser2116 phosphorylation in turn affects the global structure and function of HTT. These results provide a molecular basis for the effect of the polyQ segment on HTT structure and activity, which may be important for HTT pathology.


Assuntos
Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Peptídeos/metabolismo , Microscopia Crioeletrônica , Humanos , Proteína Huntingtina/genética , Espectrometria de Massa com Troca Hidrogênio-Deutério , Espectrometria de Massas , Modelos Moleculares , Mutação , Peptídeos/química , Fosforilação , Domínios Proteicos , Espalhamento a Baixo Ângulo , Serina/metabolismo , Difração de Raios X
12.
PLoS One ; 15(7): e0228607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645009

RESUMO

Among the first steps in inflammation is the conversion of arachidonic acid (AA) stored in the cell membranes into leukotrienes. This occurs mainly in leukocytes and depends on the interaction of two proteins: 5-lipoxygenase (5LO), stored away from the nuclear membranes until use and 5-lipoxygenase activating protein (FLAP), a transmembrane, homotrimeric protein, constitutively present in nuclear membrane. We could earlier visualize the binding of 5LO to nanodiscs in the presence of Ca2+-ions by the use of transmission electron microscopy (TEM) on samples negatively stained by sodium phosphotungstate. In the absence of Ca2+-ions 5LO did not bind to the membrane. In the present communication, FLAP reconstituted in the nanodiscs which could be purified if the His-tag was located on the FLAP C-terminus but not the N-terminus. Our aim was to find out if 1) 5LO would bind in a Ca2+-dependent manner also when FLAP is present? 2) Would the substrate (AA) have effects on 5LO binding to FLAP-nanodiscs? TEM was used to assess the complex formation between 5LO and FLAP-nanodiscs along with, sucrose gradient purification, gel-electrophoresis and mass spectrometry. It was found that presence of AA by itself induces complex formation in the absence of added calcium. This finding corroborates that AA is necessary for the complex formation and that a Ca2+-flush is mainly needed for the recruitment of 5LO to the membrane. Our results also showed that the addition of Ca2+-ions promoted binding of 5LO on the FLAP-nanodiscs as was also the case for nanodiscs without FLAP incorporated. In the absence of added substances no 5LO-FLAP complex was formed. Another finding is that the formation of a 5LO-FLAP complex appears to induce fragmentation of 5LO in vitro.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase/química , Ácido Araquidônico/química , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Nanoestruturas/ultraestrutura , Ligação Proteica , Conformação Proteica , Sacarose
13.
Sci Rep ; 10(1): 9817, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555390

RESUMO

Molecular chaperones assist proteins in achieving a functional structure and prevent them from misfolding into aggregates, including disease-associated deposits. The BRICHOS domain from familial dementia associated protein Bri2 (or ITM2B) probably chaperones its specific proprotein region with high ß-sheet propensity during biosynthesis. Recently, Bri2 BRICHOS activity was found to extend to other amyloidogenic, fibril forming peptides, in particular, Alzheimer's disease associated amyloid-ß peptide, as well as to amorphous aggregate forming proteins. However, the biological functions of the central nervous system specific homologue Bri3 BRICHOS are still to be elucidated. Here we give a detailed characterisation of the recombinant human (rh) Bri3 BRICHOS domain and compare its structural and functional properties with rh Bri2 BRICHOS. The results show that rh Bri3 BRICHOS forms more and larger oligomers, somewhat more efficiently prevents non-fibrillar protein aggregation, and less efficiently reduces Aß42 fibril formation compared to rh Bri2 BRICHOS. This suggests that Bri2 and Bri3 BRICHOS have overlapping molecular mechanisms and that their apparently different tissue expression and processing may result in different physiological functions.


Assuntos
Peptídeos beta-Amiloides/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Agregados Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Desnaturação Proteica , Domínios Proteicos
14.
Commun Biol ; 3(1): 32, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959875

RESUMO

Molecular chaperones play important roles in preventing protein misfolding and its potentially harmful consequences. Deterioration of molecular chaperone systems upon ageing are thought to underlie age-related neurodegenerative diseases, and augmenting their activities could have therapeutic potential. The dementia relevant domain BRICHOS from the Bri2 protein shows qualitatively different chaperone activities depending on quaternary structure, and assembly of monomers into high-molecular weight oligomers reduces the ability to prevent neurotoxicity induced by the Alzheimer-associated amyloid-ß peptide 1-42 (Aß42). Here we design a Bri2 BRICHOS mutant (R221E) that forms stable monomers and selectively blocks a main source of toxic species during Aß42 aggregation. Wild type Bri2 BRICHOS oligomers are partly disassembled into monomers in the presence of the R221E mutant, which leads to potentiated ability to prevent Aß42 toxicity to neuronal network activity. These results suggest that the activity of endogenous molecular chaperones may be modulated to enhance anti-Aß42 neurotoxic effects.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Hipocampo/metabolismo , Chaperonas Moleculares/metabolismo , Amiloide/metabolismo , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Hipocampo/efeitos dos fármacos , Cinese , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/farmacologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
15.
Nat Commun ; 10(1): 4527, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586059

RESUMO

Aldehyde-alcohol dehydrogenase (AdhE) is a key enzyme in bacterial fermentation, converting acetyl-CoA to ethanol, via two consecutive catalytic reactions. Here, we present a 3.5 Å resolution cryo-EM structure of full-length AdhE revealing a high-order spirosome architecture. The structure shows that the aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) active sites reside at the outer surface and the inner surface of the spirosome respectively, thus topologically separating these two activities. Furthermore, mutations disrupting the helical structure abrogate enzymatic activity, implying that formation of the spirosome structure is critical for AdhE activity. In addition, we show that this spirosome structure undergoes conformational change in the presence of cofactors. This work presents the atomic resolution structure of AdhE and suggests that the high-order helical structure regulates its enzymatic activity.


Assuntos
Álcool Desidrogenase/ultraestrutura , Aldeído Oxirredutases/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Acetilcoenzima A/química , Álcool Desidrogenase/isolamento & purificação , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Microscopia Crioeletrônica , Ensaios Enzimáticos , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Etanol/química , Mutação , Conformação Proteica em alfa-Hélice/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
16.
Curr Opin Struct Biol ; 58: 59-67, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233976

RESUMO

In the era of intense and steadily increasing attention to cryo electron microscopy (cryoEM) as a powerful tool in structural biology, particularly with regard to randomly oriented biological macromolecules, studies of 2D and small 3D crystals using cryoEM provide added value for addressing-specific questions. Size and shape demands are not as restrictive as for single particle specimens. Crystallization may stabilize whole or partly flexible molecules. Resolutions beyond 2Å, for 3D crystals even sub-Ångström structures, can be obtained allowing studies of chemical properties in detail. The electron dose can be kept low and reduce radiation damage for sensitive specimens. In contrast to X-ray crystallography, scattering of electrons will be directly related to the Coulomb potential and thus give information about charge distribution in biomolecules.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X
17.
Genes Dev ; 33(11-12): 620-625, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923167

RESUMO

DOT1L is a histone H3 Lys79 methyltransferase whose activity is stimulated by histone H2B Lys120 ubiquitination, suggesting cross-talk between histone H3 methylation and H2B ubiquitination. Here, we present cryo-EM structures of DOT1L complexes with unmodified or H2B ubiquitinated nucleosomes, showing that DOT1L recognizes H2B ubiquitin and the H2A/H2B acidic patch through a C-terminal hydrophobic helix and an arginine anchor in DOT1L, respectively. Furthermore, the structures combined with single-molecule FRET experiments show that H2B ubiquitination enhances a noncatalytic function of the DOT1L-destabilizing nucleosome. These results establish the molecular basis of the cross-talk between H2B ubiquitination and H3 Lys79 methylation as well as nucleosome destabilization by DOT1L.


Assuntos
Histonas/química , Histonas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Arginina/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metilação , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Ubiquitina/metabolismo , Ubiquitinação
18.
FEBS J ; 285(10): 1873-1885, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604175

RESUMO

Amyloidogenesis is associated with more than 30 diseases, but the molecular mechanisms involved in cell toxicity and fibril formation remain largely unknown. The inherent tendency of amyloid-forming proteins to aggregate renders expression, purification, and experimental studies challenging. NT* is a solubility tag derived from a spider silk protein that was recently introduced for the production of several aggregation-prone peptides and proteins at high yields. Herein, we investigate whether fusion to NT* can prevent amyloid fibril formation and enable controlled aggregation for experimental studies. As an example of an amyloidogenic protein, we chose the de novo-designed polypeptide ß17. The fusion protein NT*-ß17 was recombinantly expressed in Escherichia coli to produce high amounts of soluble and mostly monomeric protein. Structural analysis showed that ß17 is kept in a largely unstructured conformation in fusion with NT*. After proteolytic release, ß17 adopts a ß-sheet conformation in a pH- and salt-dependent manner and assembles into amyloid-like fibrils. The ability of NT* to prevent premature aggregation and to enable structural studies of prefibrillar states may facilitate investigation of proteins involved in amyloid diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Fibroínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Proteínas Amiloidogênicas/química , Cálcio/metabolismo , Escherichia coli/genética , Fibroínas/química , Fibroínas/genética , Concentração de Íons de Hidrogênio , Ligação Proteica , Conformação Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sais/química , Solubilidade
19.
Sci Rep ; 8(1): 5199, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581438

RESUMO

The remarkably efficient suppression of amyloid fibril formation by the DNAJB6 chaperone is dependent on a set of conserved S/T-residues and an oligomeric structure, features unusual among DNAJ chaperones. We explored the structure of DNAJB6 using a combination of structural methods. Lysine-specific crosslinking mass spectrometry provided distance constraints to select a homology model of the DNAJB6 monomer, which was subsequently used in crosslink-assisted docking to generate a dimer model. A peptide-binding cleft lined with S/T-residues is formed at the monomer-monomer interface. Mixed isotope crosslinking showed that the oligomers are dynamic entities that exchange subunits. The purified protein is well folded, soluble and composed of oligomers with a varying number of subunits according to small-angle X-ray scattering (SAXS). Elongated particles (160 × 120 Å) were detected by electron microscopy and single particle reconstruction resulted in a density map of 20 Å resolution into which the DNAJB6 dimers fit. The structure of the oligomer and the S/T-rich region is of great importance for the understanding of the function of DNAJB6 and how it can bind aggregation-prone peptides and prevent amyloid diseases.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Proteínas de Choque Térmico HSP40/química , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Conformação Proteica , Amiloide/genética , Peptídeos beta-Amiloides/genética , Fenômenos Biofísicos , Proteínas de Choque Térmico HSP40/genética , Humanos , Lisina/química , Espectrometria de Massas , Modelos Estruturais , Chaperonas Moleculares/genética , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Ligação Proteica/genética , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
J Mol Biol ; 430(6): 822-841, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29408485

RESUMO

Importin4 transports histone H3/H4 in complex with Asf1a to the nucleus for chromatin assembly. Importin4 recognizes the nuclear localization sequence located at the N-terminal tail of histones. Here, we analyzed the structures and interactions of human Importin4, histones and Asf1a by cross-linking mass spectrometry, X-ray crystallography, negative-stain electron microscopy, small-angle X-ray scattering and integrative modeling. The cross-linking mass spectrometry data showed that the C-terminal region of Importin4 was extensively cross-linked with the histone H3 tail. We determined the crystal structure of the C-terminal region of Importin4 bound to the histone H3 peptide, thus revealing that the acidic patch in Importin4 accommodates the histone H3 tail, and that histone H3 Lys14 contributes to the interaction with Importin4. In addition, we show that Asf1a modulates the binding of histone H3/H4 to Importin4. Furthermore, the molecular architecture of the Importin4_histone H3/H4_Asf1a complex was produced through an integrative modeling approach. Overall, this work provides structural insights into how Importin4 recognizes histones and their chaperone complex.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Histonas/química , Proteínas de Membrana Transportadoras/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Proteínas de Transporte , Cromatina , Cristalografia por Raios X , Humanos , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Chaperonas Moleculares , Nucleossomos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...