Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 197, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926753

RESUMO

BACKGROUND: Lipids, including phospholipids and bile acids, exert various signaling effects and are thought to contribute to the development of coronary artery disease (CAD). Here, we aimed to compare lipidomic and bile acid profiles in the blood of patients with and without CAD stratified by sex. METHODS: From 2015 to 2022, 3,012 patients who underwent coronary angiography were recruited in the INTERCATH cohort. From the overall cohort, subgroups were defined using patient characteristics such as CAD vs. no CAD, 1st vs. 3rd tertile of LDL-c, and female vs. male sex. Hereafter, a matching algorithm based on age, BMI, hypertension status, diabetes mellitus status, smoking status, the Mediterranean diet score, and the intake of statins, triglycerides, HDL-c and hs-CRP in a 1:1 ratio was implemented. Lipidomic analyses of stored blood samples using the Lipidyzer platform (SCIEX) and bile acid analysis using liquid chromatography with tandem mass spectrometry (LC‒MS/MS) were carried out. RESULTS: A total of 177 matched individuals were analyzed; the median ages were 73.5 years (25th and 75th percentile: 64.1, 78.2) and 71.9 years (65.7, 77.2) for females and males with CAD, respectively, and 67.6 years (58.3, 75.3) and 69.2 years (59.8, 76.8) for females and males without CAD, respectively. Further baseline characteristics, including cardiovascular risk factors, were balanced between the groups. Women with CAD had decreased levels of phosphatidylcholine and diacylglycerol, while no differences in bile acid profiles were detected in comparison to those of female patients without CAD. In contrast, in male patients with CAD, decreased concentrations of the secondary bile acid species glycolithocholic and lithocholic acid, as well as altered levels of specific lipids, were detected compared to those in males without CAD. Notably, male patients with low LDL-c and CAD had significantly greater concentrations of various phospholipid species, particularly plasmalogens, compared to those in high LDL-c subgroup. CONCLUSIONS: We present hypothesis-generating data on sex-specific lipidomic patterns and bile acid profiles in CAD patients. The data suggest that altered lipid and bile acid composition might contribute to CAD development and/or progression, helping to understand the different disease trajectories of CAD in women and men. REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04936438 , Unique identifier: NCT04936438.


Assuntos
Ácidos e Sais Biliares , Doença da Artéria Coronariana , Lipidômica , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos e Sais Biliares/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Caracteres Sexuais , Fatores Sexuais , Espectrometria de Massas em Tandem , Triglicerídeos/sangue , Estudos de Coortes
2.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38766857

RESUMO

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Assuntos
Adipócitos , Antígenos de Neoplasias , Neoplasias da Mama , Anidrase Carbônica IX , Movimento Celular , Neoplasias do Colo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Leptina , Comunicação Parácrina , Humanos , Anidrase Carbônica IX/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Antígenos de Neoplasias/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leptina/metabolismo , Linhagem Celular Tumoral , Animais , Obesidade/metabolismo , Meios de Cultivo Condicionados/farmacologia , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos
3.
Front Immunol ; 15: 1258119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426095

RESUMO

CD8+ T cells are a crucial part of the adaptive immune system, responsible for combating intracellular pathogens and tumor cells. The initial activation of T cells involves the formation of highly dynamic Ca2+ microdomains. Recently, purinergic signaling was shown to be involved in the formation of the initial Ca2+ microdomains in CD4+ T cells. In this study, the role of purinergic cation channels, particularly P2X4 and P2X7, in CD8+ T cell signaling from initial events to downstream responses was investigated, focusing on various aspects of T cell activation, including Ca2+ microdomains, global Ca2+ responses, NFAT-1 translocation, cytokine expression, and proliferation. While Ca2+ microdomain formation was significantly reduced in the first milliseconds to seconds in CD8+ T cells lacking P2X4 and P2X7 channels, global Ca2+ responses over minutes were comparable between wild-type (WT) and knockout cells. However, the onset velocity was reduced in P2X4-deficient cells, and P2X4, as well as P2X7-deficient cells, exhibited a delayed response to reach a certain level of free cytosolic Ca2+ concentration ([Ca2+]i). NFAT-1 translocation, a crucial transcription factor in T cell activation, was also impaired in CD8+ T cells lacking P2X4 and P2X7. In addition, the expression of IFN-γ, a major pro-inflammatory cytokine produced by activated CD8+ T cells, and Nur77, a negative regulator of T cell activation, was significantly reduced 18h post-stimulation in the knockout cells. In line, the proliferation of T cells after 3 days was also impaired in the absence of P2X4 and P2X7 channels. In summary, the study demonstrates that purinergic signaling through P2X4 and P2X7 enhances initial Ca2+ events during CD8+ T cell activation and plays a crucial role in regulating downstream responses, including NFAT-1 translocation, cytokine expression, and proliferation on multiple timescales. These findings suggest that targeting purinergic signaling pathways may offer potential therapeutic interventions.


Assuntos
Linfócitos T CD8-Positivos , Transdução de Sinais , Citocinas
4.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390373

RESUMO

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Assuntos
Canais de Cátion TRPM , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética
5.
Nat Cell Biol ; 26(1): 113-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195707

RESUMO

Brown adipose tissue (BAT) is a central thermogenic organ that enhances energy expenditure and cardiometabolic health. However, regulators that specifically increase the number of thermogenic adipocytes are still an unmet need. Here, we show that the cAMP-binding protein EPAC1 is a central regulator of adaptive BAT growth. In vivo, selective pharmacological activation of EPAC1 increases BAT mass and browning of white fat, leading to higher energy expenditure and reduced diet-induced obesity. Mechanistically, EPAC1 coordinates a network of regulators for proliferation specifically in thermogenic adipocytes, but not in white adipocytes. We pinpoint the effects of EPAC1 to PDGFRα-positive preadipocytes, and the loss of EPAC1 in these cells impedes BAT growth and worsens diet-induced obesity. Importantly, EPAC1 activation enhances the proliferation and differentiation of human brown adipocytes and human brown fat organoids. Notably, a coding variant of RAPGEF3 (encoding EPAC1) that is positively correlated with body mass index abolishes noradrenaline-induced proliferation of brown adipocytes. Thus, EPAC1 might be an attractive target to enhance thermogenic adipocyte number and energy expenditure to combat metabolic diseases.


Assuntos
Adipogenia , Tecido Adiposo Marrom , Humanos , Adipócitos Marrons/metabolismo , Tecido Adiposo Branco/metabolismo , Diferenciação Celular , Metabolismo Energético , Obesidade/metabolismo
6.
Nat Commun ; 15(1): 45, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167725

RESUMO

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Metabólicas , Camundongos , Humanos , Animais , Lipogênese , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Triglicerídeos/metabolismo , Ácidos Graxos , Dieta Hiperlipídica/efeitos adversos
7.
Nature ; 625(7994): 385-392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123683

RESUMO

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Assuntos
Gorduras na Dieta , Enterócitos , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Camundongos , Aspartato-tRNA Ligase/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Intestinos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
8.
Endocrinology ; 164(10)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37610219

RESUMO

Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, ß-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.


Assuntos
Metabolismo dos Lipídeos , Receptores de Glucocorticoides , Masculino , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Receptores de Glucocorticoides/genética , Hepatócitos , Fígado , Adipogenia
9.
Nat Immunol ; 24(9): 1473-1486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580603

RESUMO

Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.


Assuntos
Mucosa , Salmonella typhimurium , Humanos , Camundongos , Animais , Linfócitos T , Imunidade nas Mucosas
10.
Cell Rep ; 42(5): 112433, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37099421

RESUMO

Lipolysis of stored triglycerides is stimulated via ß-adrenergic receptor (ß-AR)/3',5'-cyclic adenosine monophosphate (cAMP) signaling and inhibited via phosphodiesterases (PDEs). In type 2 diabetes, a dysregulation in the storage/lipolysis of triglycerides leads to lipotoxicity. Here, we hypothesize that white adipocytes regulate their lipolytic responses via the formation of subcellular cAMP microdomains. To test this, we investigate real-time cAMP/PDE dynamics at the single-cell level in human white adipocytes with a highly sensitive florescent biosensor and uncover the presence of several receptor-associated cAMP microdomains where cAMP signals are compartmentalized to differentially regulate lipolysis. In insulin resistance, we also detect cAMP microdomain dysregulation mechanisms that promote lipotoxicity, but regulation can be restored by the anti-diabetic drug metformin. Therefore, we present a powerful live-cell imaging technique capable of resolving disease-driven alterations in cAMP/PDE signaling at the subcellular level and provide evidence to support the therapeutic potential of targeting these microdomains.


Assuntos
Diabetes Mellitus Tipo 2 , Lipólise , Humanos , Lipólise/fisiologia , Adipócitos Brancos/metabolismo , AMP Cíclico/metabolismo , Receptores Adrenérgicos beta/metabolismo
11.
Mol Metab ; 71: 101705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907508

RESUMO

OBJECTIVE: In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. METHODS: Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 °C, room temperature and 5 °C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. RESULTS: Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. CONCLUSIONS: We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3K-mTORC2-AKT signaling downstream of the insulin receptor.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo Marrom/metabolismo , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Insulina/metabolismo , Camundongos Transgênicos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Homeostase , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo
12.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766683

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver pathology worldwide. In mice and humans, NAFLD progression is characterized by the appearance of TREM2-expressing macrophages in the liver. However, their mechanistic contributions to disease progression have not been completely elucidated. Here, we show that TREM2+ macrophages prevent the generation of a pro-inflammatory response elicited by LPS-laden lipoproteins in vitro. Further, Trem2 expression regulates bone-marrow-derived macrophages (BMDMs) and Kupffer cell capacity to phagocyte apoptotic cells in vitro, which is dependent on CD14 activation. In line with this, loss of Trem2 resulted in an increased pro-inflammatory response, which ultimately aggravated liver fibrosis in murine models of NAFLD. Similarly, in a human NAFLD cohort, plasma levels of TREM2 were increased and hepatic TREM2 expression was correlated with higher levels of liver triglycerides and the acquisition of a fibrotic gene signature. Altogether, our results suggest that TREM2+ macrophages have a protective function during the progression of NAFLD, as they are involved in the processing of pro-inflammatory lipoproteins and phagocytosis of apoptotic cells and, thereby, are critical contributors for the re-establishment of liver homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Apoptose , Glicoproteínas de Membrana/genética , Receptores Imunológicos
13.
Hepatology ; 78(5): 1418-1432, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053190

RESUMO

BACKGROUND AND AIMS: The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS: To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS: We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.


Assuntos
Aterosclerose , Lipoproteínas VLDL , Hepatopatia Gordurosa não Alcoólica , Proteoglicanos Pequenos Ricos em Leucina , Animais , Feminino , Humanos , Masculino , Camundongos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Leucina , Lipoproteínas VLDL/biossíntese , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Triglicerídeos/sangue
14.
Front Immunol ; 14: 1308456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264660

RESUMO

Next to white and brown adipocytes present in white and brown adipose tissue (WAT, BAT), vascular endothelial cells, tissue-resident macrophages and other immune cells have important roles in maintaining adipose tissue homeostasis but also contribute to the etiology of obesity-associated chronic inflammatory metabolic diseases. In addition to hormonal signals such as insulin and norepinephrine, extracellular adenine nucleotides modulate lipid storage, fatty acid release and thermogenic responses in adipose tissues. The complex regulation of extracellular adenine nucleotides involves a network of ectoenzymes that convert ATP via ADP and AMP to adenosine. However, in WAT and BAT the processing of extracellular adenine nucleotides and its relevance for intercellular communications are still largely unknown. Based on our observations that in adipose tissues the adenosine-generating enzyme CD73 is mainly expressed by vascular endothelial cells, we studied glucose and lipid handling, energy expenditure and adaptive thermogenesis in mice lacking endothelial CD73 housed at different ambient temperatures. Under conditions of thermogenic activation, CD73 expressed by endothelial cells is dispensable for the expression of thermogenic genes as well as energy expenditure. Notably, thermoneutral housing leading to a state of low energy expenditure and lipid accumulation in adipose tissues resulted in enhanced glucose uptake into WAT of endothelial CD73-deficient mice. This effect was associated with elevated expression levels of de novo lipogenesis genes. Mechanistic studies provide evidence that extracellular adenosine is imported into adipocytes and converted to AMP by adenosine kinase. Subsequently, activation of the AMP kinase lowers the expression of de novo lipogenesis genes, most likely via inactivation of the transcription factor carbohydrate response element binding protein (ChREBP). In conclusion, this study demonstrates that endothelial-derived extracellular adenosine generated via the ectoenzyme CD73 is a paracrine factor shaping lipid metabolism in WAT.


Assuntos
5'-Nucleotidase , Células Endoteliais , Lipogênese , Animais , Camundongos , Nucleotídeos de Adenina , Adenosina , Monofosfato de Adenosina , Adipócitos Marrons , Tecido Adiposo Marrom , Lipídeos , 5'-Nucleotidase/metabolismo
15.
Cells ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36497069

RESUMO

Boosting NAD+ levels are considered a promising means to promote healthy aging and ameliorate dysfunctional metabolism. The expression of CD38, the major NAD+-consuming enzyme, is downregulated during thermogenesis in both brown and white adipose tissues (BAT and WAT). Moreover, BAT activation and WAT "browning" were enhanced in Cd38-/- mice. In this study, the role of CD38 in the liver during thermogenesis was investigated, with the liver being the central organ controlling systemic energy metabolism. Wild-type mice and Cd38-/- mice were exposed to cold temperatures, and levels of metabolites and enzymes were measured in the livers and plasma. During cold exposure, CD38 expression was downregulated in the liver, as in BAT and WAT, with a concomitant increase in NAD(H) and a marked decrease in NADPH levels. Glucose-6-phosphate dehydrogenase and the malic enzyme, along with enzymes in the glycolytic pathway, were downregulated, which is in line with glucose-6-P being re-directed towards glucose release. In Cd38-/- mice, the cross-regulation between glycolysis and glucose release was lost, although this did not impair the glucose release from glycogen. Glycerol levels were decreased in the liver from Cd38-/- animals upon cold exposure, suggesting that glyceroneogenesis, as gluconeogenesis, was not properly activated in the absence of CD38. SIRT3 activity, regulating mitochondrial metabolism, was enhanced by cold exposure, whereas its activity was already high at a warm temperature in Cd38-/- mice and was not further increased by the cold. Notably, FGF21 and bile acid release was enhanced in the liver of Cd38-/- mice, which might contribute to enhanced BAT activation in Cd38-/- mice. These results demonstrate that CD38 inhibition can be suggested as a strategy to boost NAD+ and would not negatively affect hepatic functions during thermogenesis.


Assuntos
Glicólise , NAD , Animais , Camundongos , NAD/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Fígado/metabolismo
16.
Sci Rep ; 12(1): 16491, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192408

RESUMO

Primary sclerosing cholangitis (PSC) is an idiopathic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of intra- and extrahepatic bile ducts. Osteoporosis is a frequent comorbidity in PSC, and we could previously demonstrate that IL17-dependent activation of bone resorption is the predominant driver of bone loss in PSC. Since we additionally observed an unexpected heterogeneity of bone mineral density in our cohort of 238 PSC patients, the present study focused on a comparative analysis of affected individuals with diagnosed osteoporosis (PSCOPO, n = 10) or high bone mass (PSCHBM, n = 7). The two groups were not distinguishable by various baseline characteristics, including liver fibrosis or serum parameters for hepatic function. In contrast, quantification of serum bile acid concentrations identified significant increases in the PSCOPO group, including glycoursodeoxycholic acid (GUDCA), an exogenous bile acid administered to both patient groups. Although cell culture experiments did not support the hypothesis that an increase in circulating bile levels is a primary cause of PSC-associated osteoporosis, the remarkable differences of endogenous bile acids and GUDCA in the serum of PSCOPO patients strongly suggest a yet unknown impairment of biliary metabolism and/or hepatic bile acid clearance in this patient subgroup, which is independent of liver fibrosis.


Assuntos
Colangite Esclerosante , Osteoporose , Bile/metabolismo , Ácidos e Sais Biliares , Colangite Esclerosante/diagnóstico , Humanos , Cirrose Hepática/complicações , Osteoporose/complicações
17.
Nat Commun ; 13(1): 4571, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931682

RESUMO

Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.


Assuntos
Quimerismo , Troca Materno-Fetal , Animais , Feminino , Feto , Mamíferos , Camundongos , Parto , Placenta , Gravidez
18.
Nature ; 609(7926): 361-368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790189

RESUMO

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Metabolismo Energético , Inosina , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Inosina/metabolismo , Inosina/farmacologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
19.
Microbiome ; 10(1): 96, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739571

RESUMO

BACKGROUND: Bariatric surgery remains the most effective therapy for adiposity reduction and remission of type 2 diabetes. Although different bariatric procedures associate with pronounced shifts in the gut microbiota, their functional role in the regulation of energetic and metabolic benefits achieved with the surgery are not clear. METHODS: To evaluate the causal as well as the inherent therapeutic character of the surgery-altered gut microbiome in improved energy and metabolic control in diet-induced obesity, an antibiotic cocktail was used to eliminate the gut microbiota in diet-induced obese rats after gastric bypass surgery, and gastric bypass-shaped gut microbiota was transplanted into obese littermates. Thorough metabolic profiling was combined with omics technologies on samples collected from cecum and plasma to identify adaptions in gut microbiota-host signaling, which control improved energy balance and metabolic profile after surgery. RESULTS: In this study, we first demonstrate that depletion of the gut microbiota largely reversed the beneficial effects of gastric bypass surgery on negative energy balance and improved glucolipid metabolism. Further, we show that the gastric bypass-shaped gut microbiota reduces adiposity in diet-induced obese recipients by re-activating energy expenditure from metabolic active brown adipose tissue. These beneficial effects were linked to improved glucose homeostasis, lipid control, and improved fatty liver disease. Mechanistically, these effects were triggered by modulation of taurine metabolism by the gastric bypass gut microbiota, fostering an increased abundance of intestinal and circulating taurine-conjugated bile acid species. In turn, these bile acids activated gut-restricted FXR and systemic TGR5 signaling to stimulate adaptive thermogenesis. CONCLUSION: Our results establish the role of the gut microbiome in the weight loss and metabolic success of gastric bypass surgery. We here identify a signaling cascade that entails altered bile acid receptor signaling resulting from a collective, hitherto undescribed change in the metabolic activity of a cluster of bacteria, thereby readjusting energy imbalance and metabolic disease in the obese host. These findings strengthen the rationale for microbiota-targeted strategies to improve and refine current therapies of obesity and metabolic syndrome. Video Abstract Bariatric Surgery (i.e. RYGB) or the repeated fecal microbiota transfer (FMT) from RYGB donors into DIO (diet-induced obesity) animals induces shifts in the intestinal microbiome, an effect that can be impaired by oral application of antibiotics (ABx). Our current study shows that RYGB-dependent alterations in the intestinal microbiome result in an increase in the luminal and systemic pool of Taurine-conjugated Bile acids (TCBAs) by various cellular mechanisms acting in the intestine and the liver. TCBAs induce signaling via two different receptors, farnesoid X receptor (FXR, specifically in the intestines) and the G-protein-coupled bile acid receptor TGR5 (systemically), finally resulting in metabolic improvement and advanced weight management. BSH, bile salt hydrolase; BAT brown adipose tissue.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Microbiota , Tecido Adiposo/metabolismo , Animais , Ácidos e Sais Biliares , Glicemia , Dieta , Obesidade/metabolismo , Obesidade/cirurgia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Taurina , Termogênese
20.
Front Cell Dev Biol ; 10: 836741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478959

RESUMO

Brown adipose tissue (BAT) has emerged as an appealing therapeutic target for cardio metabolic diseases. BAT is a heat-producing organ and upon activation substantially lowers hyperlipidemia. In response to cold exposure, not only the uptake of lipids into BAT is increased but also the Cyp7b1-mediated synthesis of bile acids (BA) from cholesterol in the liver is triggered. In addition to their role for intestinal lipid digestion, BA act as endocrine signals that can activate thermogenesis in BAT. When exposed to cold temperatures, Cyp7b1 -/- mice have compromised BAT function along with reduced fecal bile acid levels. Here, we aim to evaluate the role of Cyp7b1 for BAT-dependent lipid clearance. Using metabolic studies with radioactive tracers, we show that in response to a cold stimulus, BAT-mediated clearance of fatty acids derived from triglyceride-rich lipoproteins (TRL), and their remnants are reduced in Cyp7b1 -/- mice. The impaired lipid uptake can be explained by reduced BAT lipoprotein lipase (LPL) levels and compromised organ activity in Cyp7b1 -/- mice, which may be linked to impaired insulin signaling. Overall, our findings reveal that alterations of systemic lipoprotein metabolism mediated by cold-activated BAT are dependent, at least in part, on CYP7Β1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...