Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 4038, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511249

RESUMO

Monitoring flying-foxes is challenging as their extreme mobility produces highly dynamic population processes, considerable logistic difficulty, and variability in estimated population size. We report on methods for inferring population trend for the population of the spectacled flying-fox (Pteropus conspicillatus) in Australia. Monthly monitoring is conducted at all known roost sites across the species' range in the Wet Tropics Region. The proportion of animals in camps varies seasonally and stochastic environmental events appear to be influential. We develop a state-space model that incorporates these processes and enables inference on total population trends and uses early warning analysis to identify the causes of population dynamics. The model suggests that population growth rate is stable in the absence of cyclones, however, cyclones appear to impact on both survival and reproduction. The population recovered after two cyclones but declined after a third. The modelling estimates a population decline over 15 years of c. 75% (mean r = - 0.12yr-1 and belief of negative trend is c. 83%) suggesting that conservation action is warranted. Our work shows that a state-space modelling approach is a significant improvement on inference from raw counts from surveys and demonstrates that this approach is a workable alternative to other methods.


Assuntos
Quirópteros/crescimento & desenvolvimento , Filogeografia , Dinâmica Populacional , Animais , Austrália , Modelos Estatísticos , Análise Espaço-Temporal , Clima Tropical
2.
Risk Anal ; 36(5): 892-903, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26482012

RESUMO

The cost of an uncontrolled incursion of invasive alien species (IAS) arising from undetected entry through ports can be substantial, and knowledge of port-specific risks is needed to help allocate limited surveillance resources. Quantifying the establishment likelihood of such an incursion requires quantifying the ability of a species to enter, establish, and spread. Estimation of the approach rate of IAS into ports provides a measure of likelihood of entry. Data on the approach rate of IAS are typically sparse, and the combinations of risk factors relating to country of origin and port of arrival diverse. This presents challenges to making formal statistical inference on establishment likelihood. Here we demonstrate how these challenges can be overcome with judicious use of mixed-effects models when estimating the incursion likelihood into Australia of the European (Apis mellifera) and Asian (A. cerana) honeybees, along with the invasive parasites of biosecurity concern they host (e.g., Varroa destructor). Our results demonstrate how skewed the establishment likelihood is, with one-tenth of the ports accounting for 80% or more of the likelihood for both species. These results have been utilized by biosecurity agencies in the allocation of resources to the surveillance of maritime ports.


Assuntos
Abelhas/parasitologia , Espécies Introduzidas , Varroidae , Animais , Austrália , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...