Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(13): 9678-9686, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38988654

RESUMO

Leaching behavior of three different Pd heterogeneous catalysts (PdEnCat 30, FibreCat FC1001, and Pd/Al2O3) during the Heck reaction of iodobenzene and methyl acrylate, in the presence of triethylamine, was compared using a tandem flow reactor. While leaching was observed in all three cases, Pd/Al2O3 appeared to be the most robust, showing little/no leaching at ambient temperature. The leached Pd species also appear to display different catalytic activities. With a slight modification of the reactor, the leaching caused by individual components of the reaction mixture can be assessed separately. For the polymer-supported catalysts, triethylamine caused the largest amount of leaching, even at 30 °C. In contrast, the leaching from Pd/Al2O3 was observed only in the presence of iodobenzene at 90 °C. Variations in leaching behavior were ascribed to differences in Pd species and immobilization methods.

2.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834224

RESUMO

Using the colloidal method, attempts were made to deposit Au NPs on seven different material supports (TiO2, α and γ-Al2O3, HFeO2, CeO2, C, and SiO2). The deposition between 0.8 and 1 wt% of Au NPs can be generally achieved, apart for SiO2 (no deposition) and α-alumina (0.3 wt%). The resultant sizes of the Au NPs were dependent on the nature as well as the surface area of the support. The catalytic activity and selectivity of the supported Au catalysts were then compared in the alkylation of aniline by benzyl alcohol. Correlations were made between the nature of the support, the size of the Au NP, and the H-binding energy. A minimum H-binding energy of 1100 µV K-1 was found to be necessary for high selectivity for the secondary amine. Comparisons of the TEM images of the pre- and post-reaction catalysts also revealed the extent of Au NP agglomeration under the reaction conditions.


Assuntos
Álcool Benzílico , Dióxido de Silício , Óxido de Alumínio , Compostos de Anilina , Alquilação
3.
Mar Pollut Bull ; 182: 113997, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963223

RESUMO

Movement of marine debris is transboundary and complex, travelling vast distances and accumulating on shorelines. These marine debris wash ashore as stranded beach litter. The objective of this work is to identify release sources of marine debris accumulated along the Singapore coastlines collected by applying a time-backward adjoint marginal sensitivity method and citizen science data of stranded beach litter by a voluntary beach clean-up group. A popular tourist hotspot on the opposite shore was estimated as a possible release source contributing to the marine debris accumulation. This analytical result was validated by population density, industry types, rainfall, and inference from product packaging labels. The use of the citizen science data also illustrated potential as a data source for baseline monitoring and long-term cross-border research that influence policymaking. Future research can be conducted in an expanded domain, considering monsoon effects and instantaneous release events.


Assuntos
Praias , Plásticos , Monitoramento Ambiental , Singapura , Resíduos/análise
4.
ACS Synth Biol ; 10(6): 1417-1428, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003632

RESUMO

1-Octanol has gained interest as a chemical precursor for both high and low value commodities including fuel, solvents, surfactants, and fragrances. By harnessing the power from sunlight and CO2 as carbon source, cyanobacteria has recently been engineered for renewable production of 1-octanol. The productivity, however, remained low. In the present work, we report efforts to further improve the 1-octanol productivity. Different N-terminal truncations were evaluated on three thioesterases from different plant species, resulting in several candidate thioesterases with improved activity and selectivity toward octanoyl-ACP. The structure/function trials suggest that current knowledge and/or state-of-the art computational tools are insufficient to determine the most appropriate cleavage site for thioesterases in Synechocystis. Additionally, by tuning the inducer concentration and light intensity, we further improved the 1-octanol productivity, reaching up to 35% (w/w) carbon partitioning and a titer of 526 ± 5 mg/L 1-octanol in 12 days. Long-term cultivation experiments demonstrated that the improved strain can be stably maintained for at least 30 days and/or over ten times serial dilution. Surprisingly, the improved strain was genetically stable in contrast to earlier strains having lower productivity (and hence a reduced chance of reaching toxic product concentrations). Altogether, improved enzymes and environmental conditions (e.g., inducer concentration and light intensity) substantially increased the 1-octanol productivity. When cultured under continuous conditions, the bioproduction system reached an accumulative titer of >3.5 g/L 1-octanol over close to 180 days.


Assuntos
1-Octanol/metabolismo , Engenharia Metabólica/métodos , Synechocystis/genética , Synechocystis/metabolismo , 1-Octanol/análise , Biocombustíveis , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/biossíntese , Luz , Plasmídeos/genética , Synechocystis/efeitos da radiação , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
5.
Trends Biotechnol ; 39(4): 323-327, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33573847

RESUMO

The EU Horizon2020 consortium PHOTOFUEL joined academic and industrial partners from biology, chemistry, engineering, engine design, and lifecycle assessment, making tremendous progress towards engine-ready fuels from CO2 via engineered photosynthetic microbes. Technical, environmental, economic, and societal opportunities and challenges were explored to frame future technology realization at scale.


Assuntos
Bioengenharia , Biocombustíveis , Luz Solar , Biocatálise , Bioengenharia/tendências , Fotossíntese
6.
Front Plant Sci ; 11: 589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523588

RESUMO

Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class of natural products with potential as advanced biofuels and high-value chemicals. However, the cyanobacterial enzymes involved in the biosynthesis of the terpene precursors needed to make more complicated terpenoids are poorly characterized. Here we show that the predicted type II prenyltransferase CrtE encoded by the model cyanobacterium Synechococcus sp. PCC 7002 is homodimeric and able to synthesize C20-geranylgeranyl pyrophosphate (GGPP) from C5-isopentenyl pyrophosphate (IPP) and C5-dimethylallyl pyrophosphate (DMAPP). The crystal structure of CrtE solved to a resolution of 2.7 Å revealed a strong structural similarity to the large subunit of the heterodimeric geranylgeranyl pyrophosphate synthase 1 from Arabidopsis thaliana with each subunit containing 14 helices. Using mutagenesis, we confirmed that the fourth and fifth amino acids (Met-87 and Ser-88) before the first conserved aspartate-rich motif (FARM) play important roles in controlling chain elongation. While the WT enzyme specifically produced GGPP, variants M87F and S88Y could only generate C15-farnesyl pyrophosphate (FPP), indicating that residues with large side chains obstruct product elongation. In contrast, replacement of M87 with the smaller Ala residue allowed the formation of the longer C25-geranylfarnesyl pyrophosphate (GFPP) product. Overall, our results provide new structural and functional information on the cyanobacterial CrtE enzyme that could lead to the development of improved cyanobacterial platforms for terpenoid production.

7.
Biotechnol Bioeng ; 116(9): 2200-2211, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31062867

RESUMO

Microalgal biofuels have not yet achieved wide-spread commercialization, partially as a result of the complexities involved with designing and scaling up of their biosystems. The sparger design of a pilot-scale photobioreactor (120 L) was optimized to enable the scale-up of biofuel production. An integrated model coupling computational fluid dynamics and microalgal biofuel synthesis kinetics was used to simulate the biomass growth and novel biofuel production (i.e., bisabolene) in the photobioreactor. Bisabolene production from Chlamydomonas reinhardtii mutant was used as an example to test the proposed model. To select the optimal sparger configuration, a rigorous procedure was followed by examining the effects of sparger design parameters (number and diameter of sparger holes and gas flow rates) on spatially averaged bubble volume fraction, light intensity, friction velocity, power input, biomass concentration, and bisabolene production. The optimized sparger design increases the final biomass concentration by 18%, thereby facilitating the scaling up of biofuel production.


Assuntos
Biocombustíveis , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Fotobiorreatores , Biomassa , Cinética
8.
Sci Rep ; 8(1): 12807, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143686

RESUMO

Understanding the fundamental thermodynamic limits of photo-electrochemical (PEC) water splitting is of great scientific and practical importance. In this work, a 'detailed balance' type model of solar quantum energy converters and non-linear circuit analysis is used to calculate the thermodynamic limiting efficiency of various configurations of PEC design. This model is released as freely accessible open-source (GNU GPL v3) code written in MATLAB with a graphical user interface (GUI). The capabilities of the model are demonstrated by simulating selected permutations of PEC design and results are validated against previous literature. This tool will enable solar fuel researchers to easily compare experimental results to theoretical limits to assess its realised performance using the GUI. Furthermore, the code itself is intended to be extendable and so can be modified to include non-ideal losses such as the over-potential required or complex optical phenomena.

9.
Phys Chem Chem Phys ; 20(18): 12422-12429, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29696259

RESUMO

When scaling up photo-electrochemical processes to larger areas than conventionally studied in the laboratory, substrate performance must be taken into consideration and in this work, a methodology to assess this via an uncomplicated 2 dimensional model is outlined. It highlights that for F-doped SnO2 (FTO), which is ubiquitously used for metal oxide photoanodes, substrate performance becomes significant for moderately sized electrodes (5 cm) under no solar concentration for state of the art Fe2O3 thin films. It is demonstrated that when the process is intensified via solar concentration, current losses become quickly limiting. Methodologies to reduce the impact of substrate ohmic losses are discussed and a new strategy is proposed. Due to the nature of the photo-electrode current-potential relationship, operation at a higher potential where the photo-current saturates (before the dark current is observed) will lead to a minimum in current loss due to substrate performance. Crucially, this work outlines an additional challenge in scaling up photo-electrodes based on low conductivity substrates, and establishes that such challenges are not insurmountable.

10.
Nat Commun ; 8(1): 1327, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109396

RESUMO

Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Cianobactérias/fisiologia , Biotecnologia , Eletricidade , Desenho de Equipamento , Estudos de Viabilidade , Nanotubos de Carbono , Fotossíntese , Impressão , Synechocystis/fisiologia
11.
Biochem Eng J ; 117(Pt B): 73-81, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28111521

RESUMO

Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic Nicotiana tabacum shoots from callus tissue in RITA® temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min-1 was identified, corresponding to a shear rate of 96.7 s-1, pneumatic power input of 8.8 mW kg-1 and initial 20-day pneumatic energy dissipation of 127 J kg-1, at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.

12.
Dalton Trans ; 46(7): 2081-2090, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28133666

RESUMO

The reaction of a series of dinucleating bis(ß-diketiminate) pro-ligands with mesitylcopper in the presence and absence of mono and diphosphines has allowed the isolation of a new series of dicopper(i) complexes. Inclusion of trans-1,2-cyclohexyl (1), 2,6-pyridyl (2), and 2,2'-oxydiaryl (3) spacers between the ß-diketiminate units has been studied. The isolation of three new copper(i) phosphine complexes [1·Cu2(PPh3)2], [2·Cu2(PPh3)2] and [3·Cu2(PPh3)2] is reported. While these compounds display large CuCu separations of 5.4-7.9 Å in the solid state, solution data are consistent with a large degree of conformational freedom. Modification of the monophosphine to a diphosphine, DPPE, allowed the isolation of the novel 11-membered bimetallic macrocycle [2·Cu2(DPPE)] containing both a binucleating nitrogen based ligand and a chelating diphosphine. While acetonitrile adducts of this series could also be generated in situ, under forcing conditions reaction of the 2,6-pyridyl bridged ligand with mesityl copper led to the formation [2·Cu2]2. This latter complex is a dimer of dicopper(i) units in which the bis(ß-diketiminate) ligand now binds four copper(i) centers through not only the expected κ2-N,N'-chelation but also κ1- and η2-binding of the central pyridine through orthogonal Cu-N and Cu-arene interactions. Reversible coordination of alkenes, pyridine and quinoline to the copper cluster was identified allowing the isolation and structural characterisation of a further series of dinuclear complexes [2·Cu2(pyridine)2], [2·Cu2(cyclopentene)2] and [2·Cu2(norbornene)2]. Solution studies allow quantification of the reversible binding event through a van't Hoff analysis. Both solution and the solid state data suggest a weak anagostic interaction exists in the latter two alkene complexes of copper(i). The new complexes have been characterized by X-ray diffraction, multinuclear NMR spectroscopy and CHN analysis.

13.
Sci Total Environ ; 568: 489-497, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318079

RESUMO

Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350°C and Residence Times (RT) ranging between 5 and 60min The effect of reaction conditions on the NO3(-),PO4(3-),SO4(2-),Cl(-),Na(+),andK(+) ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275°C/30min and 350°C/10min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD.


Assuntos
Biomassa , Microalgas/química , Reciclagem , Estramenópilas/química , Eliminação de Resíduos Líquidos/métodos , Aquicultura , Biocombustíveis , Reatores Biológicos , Temperatura , Poluentes Químicos da Água/análise
14.
Bioresour Technol ; 199: 288-299, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514623

RESUMO

The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile.


Assuntos
Biomassa , Biotecnologia/métodos , Meio Ambiente , Microalgas/metabolismo , Temperatura , Água/farmacologia , Microalgas/efeitos dos fármacos
15.
Biotechnol Bioeng ; 112(12): 2429-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26041472

RESUMO

This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Hidrogênio/metabolismo , Fotobiorreatores/microbiologia , Biomassa , Modelos Teóricos
16.
Bioresour Technol ; 191: 460-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25908412

RESUMO

This investigation demonstrates the utility of a novel laboratory scale continuous plug flow reactor for fast Hydrothermal Liquefaction (HTL) of microalgae in a quartz lined chamber. Reactions were carried out between 300 and 380 °C and residence times of 0.5-4 min. Cyclohexane was used as a co-solvent to enhance extraction and prevent char formation. Highest biocrude yield of 38 wt.% was achieved at 380 °C and 30 s as well as Water Soluble Fraction containing up to 60 wt.% matter recovered. Analysis of the biocrude showed that the extent of deoxygenation and denitrogenation after HTL varied and is dependent on the reaction conditions, Fourier Transform Infrared Spectroscopy analysis showed that biocrude contains similar functional moieties with only a small difference observed at different reaction conditions. Conversely, the Simulated Distillation and Size Exclusion Chromatography data showed that harsher conditions produced marginally better biocrude with improved boiling point profile and lower molecular weight compounds, respectively which was confirmed using Gas Chromatography-Mass Spectrometry.


Assuntos
Reatores Biológicos , Microalgas/metabolismo , Cromatografia em Gel , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier
17.
ACS Appl Mater Interfaces ; 7(17): 9088-97, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25902420

RESUMO

TiO2 films with modified morphology have been successfully synthesized via a facile spray-pyrolysis method in the presence of poly(ethylene glycol) (PEG) as a templating agent. The effects of the PEG concentration on the relevant properties of TiO2 films were investigated by means of scanning electron microscopy, X-ray diffraction, and UV-vis absorbance spectroscopy, while their photocatalytic properties were assessed by photoelectrochemical (PEC) water-splitting measurements. The introduction of 10 g·L(-1) PEG into the precursor solution leads to surface roughening with an exceptional improvement in PEC responses, revealing a photoconversion efficiency of 1.15% at -0.50 V vs HgO|Hg (in a 1 M NaOH electrolyte under broad-spectrum illumination), which is nearly triple that of the unmodified film (0.45% at -0.38 V vs HgO|Hg). Although the efficiency of the rough-surface photoanodes deteriorates upon increasing the PEG content, their PEC responses are still superior to those of smooth-surface films. Possible phenomena that might be responsible for the experimental observations are suggested and discussed accordingly.

18.
ChemSusChem ; 8(4): 665-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25572428

RESUMO

The electrochemical cathodic reduction of cyclic imides (maleimides) to succinimides can be achieved chemoselectively in the presence of alkene, alkyne, and benzyl groups. The efficiency of the system was demonstrated by using a 3D electrode in a continuous flow reactor. The reduction of 3,4-dimethylmaleimides to the corresponding succinimides proceeds with a 3:2 diastereomeric ratio, which is independent of the nitrogen substituent and electrode surface area. The stereoselectivity of the process was rationalized by using DFT calculations, involving an acid-catalyzed tautomerization of a half-enol occurring through a double hydrogen-transfer mechanism.


Assuntos
Maleimidas/química , Succinimidas/química , Eletroquímica , Eletrodos , Oxirredução , Estereoisomerismo
19.
Organometallics ; 33(5): 1112-1119, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24882918

RESUMO

The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4-6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7-9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10-12. The new complexes 4-12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d8-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(µ-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13-15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer-dimer equilibrium that is dominated by the mononuclear species at 298 K.

20.
Appl Spectrosc ; 68(1): 88-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24405958

RESUMO

Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy has been applied in situ to study gas adsorption on a colloidal stearate-capped zinc oxide (ZnO) surface. Infrared spectra of a colloidal stearate-capped ZnO catalyst substrate were assigned at room temperature using zinc stearate as a reference compound. Heating was shown to create a monodentate species that allowed conformational change to occur, leading to altered binding geometry of the stearate ligands upon cooling. CO2 and H2 adsorption measurements demonstrated that the ligand shell was permeable and did not cover the entire surface, allowing adsorption and reaction with at least some portion of the ZnO surface. It has been demonstrated that stearate ligands did not prevent the usual chemisorption processes involved in catalytic reactions on a model ZnO catalyst system, yet the ligand-support system is dynamic under representative reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...