Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(6): 1082-1093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831208

RESUMO

The point spread function (PSF) of a microscope describes the image of a point emitter. Knowing the accurate PSF model is essential for various imaging tasks, including single-molecule localization, aberration correction and deconvolution. Here we present universal inverse modeling of point spread functions (uiPSF), a toolbox to infer accurate PSF models from microscopy data, using either image stacks of fluorescent beads or directly images of blinking fluorophores, the raw data in single-molecule localization microscopy (SMLM). Our modular framework is applicable to a variety of microscope modalities and the PSF model incorporates system- or sample-specific characteristics, for example, the bead size, field- and depth- dependent aberrations, and transformations among channels. We demonstrate its application in single or multiple channels or large field-of-view SMLM systems, 4Pi-SMLM, and lattice light-sheet microscopes using either bead data or single-molecule blinking data.


Assuntos
Microscopia de Fluorescência , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Microscopia de Fluorescência/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Corantes Fluorescentes/química , Modelos Teóricos
2.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961269

RESUMO

The point spread function (PSF) of a microscope describes the image of a point emitter. Knowing the accurate PSF model is essential for various imaging tasks, including single molecule localization, aberration correction and deconvolution. Here we present uiPSF (universal inverse modelling of Point Spread Functions), a toolbox to infer accurate PSF models from microscopy data, using either image stacks of fluorescent beads or directly images of blinking fluorophores, the raw data in single molecule localization microscopy (SMLM). The resulting PSF model enables accurate 3D super-resolution imaging using SMLM. Additionally, uiPSF can be used to characterize and optimize a microscope system by quantifying the aberrations, including field-dependent aberrations, and resolutions. Our modular framework is applicable to a variety of microscope modalities and the PSF model incorporates system or sample specific characteristics, e.g., the bead size, depth dependent aberrations and transformations among channels. We demonstrate its application in single or multiple channels or large field-of-view SMLM systems, 4Pi-SMLM, and lattice light-sheet microscopes using either bead data or single molecule blinking data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...