Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1351427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318169

RESUMO

One of the leading causes of infectious diarrhea in newborn calves is the apicomplexan protozoan Cryptosporidium parvum (C. parvum). However, little is known about its immunopathogenesis. Using next generation sequencing, this study investigated the immune transcriptional response to C. parvum infection in neonatal calves. Neonatal male Holstein-Friesian calves were either orally infected (N = 5) or not (CTRL group, N = 5) with C. parvum oocysts (gp60 subtype IIaA15G2R1) at day 1 of life and slaughtered on day 7 after infection. Total RNA was extracted from the jejunal mucosa for short read. Differentially expressed genes (DEGs) between infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05. Infection did not affect plasma immunohematological parameters, including neutrophil, lymphocyte, monocyte, leucocyte, thrombocyte, and erythrocyte counts as well as hematocrit and hemoglobin concentration on day 7 post infection. The immune-related DEGs were selected according to the UniProt immune system process database and were used for gene ontology (GO) and pathway enrichment analysis using Cytoscape (v3.9.1). Based on GO analysis, DEGs annotated to mucosal immunity, recognizing and presenting antigens, chemotaxis of neutrophils, eosinophils, natural killer cells, B and T cells mediated by signaling pathways including toll like receptors, interleukins, tumor necrosis factor, T cell receptor, and NF-KB were upregulated, while markers of macrophages chemotaxis and cytosolic pattern recognition were downregulated. This study provides a holistic snapshot of immune-related pathways induced by C. parvum in calves, including novel and detailed feedback and feedforward regulatory mechanisms establishing the crosstalk between innate and adaptive immune response in neonate calves, which could be utilized further to develop new therapeutic strategies.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Fenômenos do Sistema Imunitário , Animais , Bovinos , Masculino , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Transcriptoma , Doenças dos Bovinos/genética , Mucosa Intestinal , Fator de Necrose Tumoral alfa/genética , Imunidade Adaptativa
2.
Int J Parasitol Parasites Wildl ; 22: 80-83, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37736617

RESUMO

While the principle definitive host of the zoonotic cestode Echinococcus multilocularis in Europe is the red fox, several rodent species act as main intermediate hosts. Among others, e.g., humans, dogs, and pigs, also horses have been described to act as aberrant hosts in highly endemic regions. Here, a case of an E. multilocularis infection in a kulan (Equus hemionus kulan) is described. The five years old kulan from a zoo in Slovakia was transported to an animal park in Germany. The animal had to be euthanized within a few weeks after the import due to its poor general state of health. The pathological examination revealed a nodular mass in the liver as an incidental finding. By histological examination of the mass, a pyogranulomatous and necrotizing inflammation and intralesional fragments of amorphous eosinophil layers were detected. The suspected diagnosis of E. multilocularis infection was confirmed by PCR addressing parts of the genes 12S rRNA and the NADH dehydrogenase subunit 2, showing very high identities with isolates from France, Slovakia and the USA.

3.
Langmuir ; 39(26): 9078-9084, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358208

RESUMO

Tidal breathing is associated with a 30% change of the surfactant-covered alveolar surface occurring about 16 times per minute. To model this highly dynamic process, erucic acid monolayers at the air-water interface were compressed fast. Brewster angle microscopy imaged the fractal liquid-condensed (LC) domains and quantified the surface flow in size, direction, and duration. Radial branch distribution of the domains has a minimum in the flow direction, as was shown with directionality histograms. The fast Fourier transform of the domains shows a preferential growth perpendicular to the flow direction. Additionally, at the beginning of the flow, the downstream side of the domain grows faster than the upstream side. Surface flows act on the mm to cm scale, cause an anisotropic flow in the liquid expanded phase surrounding the LC domain, and affect the overall domain shape. On the µm-scale, the dendritic or seaweed domains' branches were only slightly disturbed. These results may help to understand pulmonary surfactant layers.

4.
Vet Res ; 54(1): 40, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138353

RESUMO

Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Glucose , Mucosa Intestinal , Animais , Bovinos , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/parasitologia , Glicemia/metabolismo , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/parasitologia , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Masculino
5.
Membranes (Basel) ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877901

RESUMO

The lateral movement in lipid membranes depends on their diffusion constant within the membrane. However, when the flux of the subphase is high, the convective flow beneath the membrane also influences lipid movement. Lipid monolayers of an unsaturated fatty acid at the water-air interface serve as model membranes. The formation of domains in the liquid/condensed coexistence region is investigated. The dimension of the domains is fractal, and they grow with a constant growth velocity. Increasing the compression speed of the monolayer induces a transition from seaweed growth to dendritic growth. Seaweed domains have broad tips and wide and variable side branch spacing. In contrast, dendritic domains have a higher fractal dimension, narrower tips, and small, well-defined side branch spacing. Additionally, the growth velocity is markedly larger for dendritic than seaweed growth. The domains' growth velocity increases and the tip radius decreases with increasing supersaturation in the liquid/condensed coexistence region. Implications for membranes are discussed.

6.
Langmuir ; 37(35): 10490-10498, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34436900

RESUMO

Typically, laterally patterned films are fabricated by lithographic techniques, external fields, or di-block copolymer self-assembly. We investigate the self-patterning of polyelectrolyte multilayers, poly(diallyldimethylammonium) (PDADMA)/poly(styrenesulfonate) (PSS)short. The low PSS molecular weight (Mw(PSSshort) = 10.7 kDa) is necessary because PSSshort is somewhat mobile within a PDADMA/PSSshort film, as demonstrated by the exponential growth regime at the beginning of the PDADMA/PSSshort multilayer build-up. No self-patterning was observed when the PDADMA/PSS film consisted of only immobile polyelectrolytes. Atomic force microscopy images show that self-patterning begins when the film consists of seven deposited PDADMA/PSSshort bilayers. When more bilayers are added, the surface ribbing evolved into bands, and circular domains were finally observed. The mean distance between the surface structures increased monotonously with the film thickness, from 70 to 250 nm. Scanning electron microscopy images showed that exposure to vacuum resulted in thinning of the film and an increase in the mean distance between domains. The effect is weaker for PSSshort-terminated films than for PDADMA-terminated films. The mechanism leading to domain formation during film build-up and the effect of post-preparation treatment are discussed.

7.
Biophys J ; 120(15): 3103-3111, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197799

RESUMO

Lipid rafts are discrete, heterogeneous domains of phospholipids, sphingolipids, and sterols that are present in the cell membrane. They are responsible for conducting cell signaling and maintaining lipid-protein functionality. Redox-stress-induced modifications to any of their components can severely alter the mechanics and dynamics of the membrane causing impairment to the lipid-protein functionality. Here, we report on the effect of sphingomyelin (SM) in controlling membrane permeability and its role as a regulatory lipid in the presence of nitric oxide (NO). Force spectroscopy and atomic force microscopy imaging of raft-like phases (referring here to the coexistence of "liquid-ordered" and "liquid-disordered" phases in model bilayer membranes) prepared from lipids: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC):SM:cholesterol (CH) (at three ratios) showed that the adhesion forces to pull the tip out of the membrane increased with increasing SM concentration, indicating decreased membrane permeability. However, in the presence of NO radical (1 and 5 µM), the adhesion forces decreased depending on SM concentration. The membrane was found to be stable at the ratio POPC:SM:CH (2:1:1) even when exposed to 1 µM NO. We believe that this is a critical ratio needed by the raft-like phases to maintain homeostasis under stress conditions. The stability could be due to an interplay existing between SM and CH. However, at 5 µM NO, membrane deteriorations were detected. For POPC:SM:CH (2:2:1) ratio, NO displayed a pro-oxidant behavior and damaged the membrane at both radical concentrations. These changes were reflected by the differences in the height profiles of the raft-like phases observed by atomic force microscopy imaging. Malondialdehyde (a peroxidation product) detection suggests that lipids may have undergone lipid nitroxidation. The changes were instantaneous and independent of radical concentration and incubation time. Our study underlines the need for identifying appropriate ratios in the lipid rafts of the cell membranes to withstand redox imbalances caused by radicals such as NO.


Assuntos
Óxido Nítrico , Esfingomielinas , Membrana Celular , Colesterol , Bicamadas Lipídicas , Microdomínios da Membrana , Fosfatidilcolinas
8.
Biomolecules ; 11(2)2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668553

RESUMO

In the eye lens cell membrane, the lipid composition changes during the aging process: the proportion of sphingomyelins (SM) increases, that of phosphatidylcholines decreases. To investigate the protective role of the SMs in the lens cell membrane against oxidative damage, analytical techniques such as electrochemistry, high-resolution mass spectrometry (HR-MS), and atomic force microscopy (AFM) were applied. Supported lipid bilayers (SLB) were prepared to mimic the lens cell membrane with different fractions of PLPC/SM (PLPC: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine). The SLBs were treated with cold physical plasma. A protective effect of 30% and 44% in the presence of 25%, and 75% SM in the bilayer was observed, respectively. PLPC and SM oxidation products were determined via HR-MS for SLBs after plasma treatment. The yield of fragments gradually decreased as the SM ratio increased. Topographic images obtained by AFM of PLPC-bilayers showed SLB degradation and pore formation after plasma treatment, no degradation was observed in PLPC/SM bilayers. The results of all techniques confirm the protective role of SM in the membrane against oxidative damage and support the idea that the SM content in lens cell membrane is increased during aging in the absence of effective antioxidant systems to protect the eye from oxidative damage and to prolong lens transparency.


Assuntos
Cristalino/metabolismo , Estresse Oxidativo/fisiologia , Esfingomielinas/fisiologia , Bicamadas Lipídicas , Espectrometria de Massas/métodos , Microscopia de Força Atômica , Gases em Plasma
9.
Front Bioeng Biotechnol ; 8: 1016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015006

RESUMO

Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between -90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (-90 to -3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials' zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.

10.
Langmuir ; 36(41): 12213-12220, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32988204

RESUMO

Lipid oxidation does strongly influence the self-organization of plasma membranes; the detailed influence is not yet clear. In this work, phospholipid monolayers at the air/water interface were used as model membranes. Oxidation was induced by the reactive oxygen species formed in a H2O2-enriched solution. The reaction was found to be diffusion-limited; the concentration of the reactive oxygen species was about 50 nM. Isotherms were recorded for different phosphatidylcholines with saturated and unsaturated acyl chains. For unsaturated lipids, the isotherms showed a constant relative molecular area increase after oxidization, independent of the molecular area and dependent on the degree of peroxidation. Similarly, the compressibility modulus was unchanged, but shifted to larger molecular areas. The correlation between peroxidation and changes of the interaction forces between the lipid molecules is discussed.

11.
Vet Parasitol Reg Stud Reports ; 20: 100403, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32448547

RESUMO

Alveolar echinococcosis (AE) is a parasitic zoonosis occurring in most European countries and also emerging in parts of Asia and North America. AE is caused by the larval stage of Echinococcus multilocularis in intermediate and also in accidental hosts. The principal definitive host is the red fox, but domestic dogs and cats are also potential definitive hosts. Several species of rodents serve as intermediate hosts of this parasite. However, there are also some species acting as accidental intermediate hosts, among them dogs. Since the late 1980s cases of canine AE have been diagnosed. Here, we present a case of canine AE in a two-year old female intact German spaniel from Thuringia, Central Germany. The dog was used as a hunting dog and presented to a small animal clinic for subacute lethargy and inappetence. Abdominal ultrasound and contrast computed tomography (CT) scan were performed and revealed intrahepatic lesions. Multinodular changes of the liver and the greater omentum were demonstrated by exploratory laparotomy. After euthanasia, a necropsy was performed and histological sections of representative tissue samples were prepared. PCR followed by sequencing was conducted with DNA extracted from tissue samples of the liver, hepatic lymph nodes and greater omentum. The sequence herein obtained showed very high similarity with other partial nad2 sequences of E. multilocularis from the GenBank database by BLASTn analysis and was analysed using the maximum likelihood method. The presented case combines the clinical presentation and pathological, parasitological and phylogenetic analyses.


Assuntos
Doenças do Cão/diagnóstico , Equinococose/veterinária , Echinococcus multilocularis/isolamento & purificação , Animais , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/parasitologia , Cães , Equinococose/diagnóstico , Equinococose/diagnóstico por imagem , Equinococose/parasitologia , Echinococcus multilocularis/crescimento & desenvolvimento , Evolução Fatal , Feminino , Alemanha , Proteínas de Helminto/análise , Larva/crescimento & desenvolvimento , Ultrassonografia/veterinária
12.
Langmuir ; 35(48): 15491-15499, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31486657

RESUMO

Surface forces are used to investigate the polymer conformation and the surface charge of polyelectrolyte multilayers. Films are prepared from strong polyelectrolytes with low and high linear charge density at 0.1 M NaCl, namely poly(diallyldimethylammonium) (PDADMA) and poly(styrenesulfonate) (PSS). The multilayer has two growth regimes: in the beginning, the film can contain as many positive as negative monomers. After about 15 deposited layer pairs, a linear growth regime characterized by an excess of cationic PDADMA monomers occurs. Independent of the film composition, at preparation conditions, the film surface is flat, uncharged and partially hydrophobic. Surface force measurements at decreased ionic strength provide insight. For PSS-terminated films electrostatic forces are found. At the beginning of multilayer formation, the surface charge density is negative. However, in the linear growth regime it is positive and low (one charge per 200-400 nm2). This reversal of surface charge density of PSS-terminated films is attributed to excess PDADMA-monomers within the film. PDADMA terminated films show steric forces, chains protrude into the solution and form a pseudobrush, which scales as a polyelectrolyte brush with a low grafting density (1900 nm2 per chain). We suggest a model of polyelectrolyte multilayer formation: PDADMA with its low linear charge density adsorbs with weakly bound chains. Monovalent anions within the film compensate PDADMA monomer charges. When PSS adsorbs onto a PDADMA-terminated multilayer, PSS monomers replace monovalent anions. While electrostatic bonds are formed and dissolved within the polyelectrolyte multilayer, the surface charge density remains zero.

13.
Langmuir ; 35(26): 8519-8530, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30901219

RESUMO

In the 1980s, Helmuth Möhwald studied lipid monolayers at the air/water interface to understand the thermodynamically characterized phases at the molecular level. In collaboration with Jens Als-Nielsen, X-ray reflectometry was used and further developed to determine the electron density profile perpendicular to the water surface. Using a slab model, parameters such as thickness and density of the individual molecular regions, as well as the roughness of the individual interfaces, were determined. Later, X-ray and neutron reflectometry helped to understand the coverage and conformation of anchored and adsorbed polymers. Nowadays, they resolve molecular properties in emerging topics such as liquid metals and ionic liquids. Much is still to be learned about buried interfaces (e.g., liquid/liquid interfaces). In this Article, a historical and theoretical background of X-ray reflectivity is given, recent developments of X-ray and neutron reflectometry for polymers at interfaces and thin layers are highlighted, and emerging research topics involving these techniques are emphasized.

14.
Langmuir ; 35(10): 3624-3633, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30732452

RESUMO

Cardiolipin is a mitochondrial phospholipid with four alkyl chains and two phosphate moieties. Tetramyristoyl cardiolipin (TMCL, (14:0)4CL) monolayers at the air-water interface are characterized by compression isotherms, which show a liquid expanded/liquid condensed phase transition. The phase transition surface pressure πc depends on the composition of the aqueous solution. In a calculation, this is attributed to the electrostatic double layer, which is induced by the head groups of the model membrane, and competitive ion binding. The intrinsic binding constant is large for protons ( KH = 10 L/mol) and small for monovalent cations ( KM (Na+, K+, Cs+) = 10-3 L/mol). The different intrinsic binding constants explain the non-monotonic behavior of πc on increasing the salt concentration: raising the monovalent salt concentration increases πc by charging the TMCL monolayer until 0.1 mol/L, then screening effects dominate and decrease πc by reducing the electrostatic repulsion between lipid head groups. When at fixed 0.15 mol/L NaCl concentration, the concentration of divalent cations is increased, πc decreases. The intrinsic binding constants of divalent cations follow the sequence Sr2+ < Mg2+ < Mn2+ ≈ Zn2+ ≈ Ca2+ ( KD,Ca = 1.2 L/mol). The predictive power of the calculations was tested with different solutions.


Assuntos
Cardiolipinas/química , Cátions Bivalentes/química , Tamanho da Partícula , Propriedades de Superfície
15.
Opt Express ; 25(22): 27077-27085, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092189

RESUMO

Ellipsometric measurements give information on two film properties with high precision, thickness and refractive index. In the simplest case, the substrate is covered with a single homogenous, transparent film. Yet, with ellipsometry, it is only possible to determine the two film properties thickness and refractive simultaneously if the layer thickness exceeds 15 nm - a restriction well known for a century. Here we present a technique to cross this limitation: A series expansion of the ellipsometric ratio ρ to the second order of the layer thickness relative to the wavelength reveals the first and second ellipsometric moment. These moments are properties of the thin film and independent of incident angle. Using both moments and one additional reference measurement enables to determine simultaneously both thickness and refractive index of ultra-thin films down to 5 nm thickness.

16.
ACS Appl Mater Interfaces ; 9(12): 10461-10471, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28296389

RESUMO

Topographical and chemical features of biomaterial surfaces affect the cell physiology at the interface and are promising tools for the improvement of implants. The dominance of the surface topography on cell behavior is often accentuated. Striated surfaces induce an alignment of cells and their intracellular adhesion-mediated components. Recently, it could be demonstrated that a chemical modification via plasma polymerized allylamine was not only able to boost osteoblast cell adhesion and spreading but also override the cell alignment on stochastically machined titanium. In order to discern what kind of chemical surface modifications let the cell forget the underlying surface structure, we used an approach on geometric microgrooves produced by deep reactive ion etching (DRIE). In this study, we systematically investigated the surface modification by (i) methyl-, carboxyl-, and amino functionalization created via plasma polymerization processes, (ii) coating with the extracellular matrix protein collagen-I or immobilization of the integrin adhesion peptide sequence Arg-Gly-Asp (RGD), and (iii) treatment with an atmospheric pressure plasma jet operating with argon/oxygen gas (Ar/O2). Interestingly, only the amino functionalization, which presented positive charges at the surface, was able to chemically disguise the microgrooves and therefore to interrupt the microtopography induced contact guidance of the osteoblastic cells MG-63. However, the RGD peptide coating revealed enhanced cell spreading as well, with fine, actin-containing protrusions. The Ar/O2-functionalization demonstrated the best topography handling, e.g. cells closely attached even to features such as the sidewalls of the groove steps. In the end, the amino functionalization is unique in abrogating the cell contact guidance.


Assuntos
Adesão Celular , Materiais Biocompatíveis , Osteoblastos , Propriedades de Superfície , Titânio
17.
Mater Sci Eng C Mater Biol Appl ; 69: 1116-24, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612809

RESUMO

Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10µm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface.


Assuntos
Cerâmica/química , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Citoesqueleto de Actina/efeitos dos fármacos , Ligas , Alilamina/química , Fosfatos de Cálcio/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia Fotoeletrônica , Porosidade , Propriedades de Superfície , Titânio/química
18.
Mol Pharm ; 13(7): 2346-62, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27215283

RESUMO

The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped ß-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Fotoquímica/métodos , Pró-Fármacos/química , Linhagem Celular Tumoral , DNA/química , Humanos , Microscopia Eletrônica de Transmissão , Compostos Organoplatínicos/química , Difração de Raios X
19.
Transfusion ; 55(12): 2939-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26361072

RESUMO

BACKGROUND: HNA-3a antibodies induce severe transfusion-related acute lung injury (TRALI) in which neutrophils play a major role. As neutrophil passage through the pulmonary microvasculature is a critical step in the pathogenesis of TRALI, we investigated the impact of HNA-3a antibodies on two important factors that could impair granulocyte passage through lung capillaries: the elasticity of neutrophils and the expression and activation of adhesion molecules. STUDY DESIGN AND METHODS: The impact of HNA-3a antibodies on the elasticity of neutrophils was investigated using atomic force microscopy (AFM). Neutrophils were settled on poly-2-hydroxyethyl-methacrylate-coated glass slides before treatment with anti-HNA-3a plasma samples, control plasma, or control plasma containing formyl-methionyl-leucyl-phenylalanine (fMLP). Elasticity measurements were carried out in a temperature-controlled perfusion chamber using an atomic force microscopy (AFM) device. The impact of HNA-3a antibodies on the surface expression of total CD11b, activation of CD11b, and L-selectin (CD62L) shedding was investigated by flow cytometry. The functional impact of HNA-3a antibodies on neutrophil adhesion was assessed using fibrinogen-coated plates. RESULTS: HNA-3a antibodies induced stiffening of neutrophils (+24%-40%; p < 0.05) to a similar extent as fMLP. This effect was blocked by treatment of neutrophils with cytochalasin D. While total surface expression of CD11b and L-selectin on neutrophils was largely unaffected, HNA-3a antibodies induced alloantigen-specific activation of CD11b (+72%-107%; p < 0.05) and increased adhesion of neutrophils to fibrinogen. CONCLUSION: Accumulation of neutrophils in the pulmonary microvasculature during severe TRALI is likely mediated by increased rigidity and CD11b-mediated adhesion of neutrophils leading to retention of neutrophils.


Assuntos
Antígeno CD11b/fisiologia , Isoanticorpos/fisiologia , Isoantígenos/imunologia , Selectina L/fisiologia , Neutrófilos/fisiologia , Lesão Pulmonar Aguda/etiologia , Antígeno CD11b/química , Adesão Celular , Humanos , Microscopia de Força Atômica , Conformação Proteica , Reação Transfusional
20.
Thromb Haemost ; 114(6): 1189-98, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26225544

RESUMO

Short chain polyphosphates (polyP) are pro-coagulant and pro-inflammatory platelet released inorganic polymers. The platelet chemokine platelet factor 4 (PF4) binds to lipid A on bacteria, inducing an antibody mediated host defense mechanism, which can be misdirected against PF4/heparin complexes leading to the adverse drug reaction heparin-induced thrombocytopenia (HIT). Here, we demonstrate that PF4 complex formation with soluble short chain polyP contributes to host defense mechanisms. Circular dichroism spectroscopy and isothermal titration calorimetry revealed that PF4 changed its structure upon binding to polyP in a similar way as seen in PF4/heparin complexes. Consequently, PF4/polyP complexes exposed neoepitopes to which human anti-PF4/heparin antibodies bound. PolyP enhanced binding of PF4 to Escherichia coli, hereby facilitating bacterial opsonisation and, in the presence of human anti-PF4/polyanion antibodies, phagocytosis. Our study indicates a role of polyP in enhancing PF4-mediated defense mechanisms of innate immunity.


Assuntos
Antígenos/imunologia , Fator Plaquetário 4/imunologia , Polifosfatos/imunologia , Antígenos/química , Calorimetria , Dicroísmo Circular , Reações Cruzadas , Relação Dose-Resposta a Droga , Escherichia coli , Heparina/imunologia , Humanos , Imunidade Inata , Neutrófilos/fisiologia , Fagocitose , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Polifosfatos/química , Polifosfatos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...