Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8118, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304653

RESUMO

Ibogaine and its main metabolite noribogaine provide important molecular prototypes for markedly different treatment of substance use disorders and co-morbid mental health illnesses. However, these compounds present a cardiac safety risk and a highly complex molecular mechanism. We introduce a class of iboga alkaloids - termed oxa-iboga - defined as benzofuran-containing iboga analogs and created via structural editing of the iboga skeleton. The oxa-iboga compounds lack the proarrhythmic adverse effects of ibogaine and noribogaine in primary human cardiomyocytes and show superior efficacy in animal models of opioid use disorder in male rats. They act as potent kappa opioid receptor agonists in vitro and in vivo, but exhibit atypical behavioral features compared to standard kappa opioid agonists. Oxa-noribogaine induces long-lasting suppression of morphine, heroin, and fentanyl intake after a single dose or a short treatment regimen, reversal of persistent opioid-induced hyperalgesia, and suppression of opioid drug seeking in rodent relapse models. As such, oxa-iboga compounds represent mechanistically distinct iboga analogs with therapeutic potential.


Assuntos
Ibogaína , Miócitos Cardíacos , Animais , Humanos , Masculino , Ibogaína/análogos & derivados , Ibogaína/farmacologia , Ibogaína/uso terapêutico , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Alcaloides/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico
2.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37646374

RESUMO

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Ratos , Serotonina , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Encéfalo , Cocaína/farmacologia
3.
Front Psychiatry ; 14: 1054506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816400

RESUMO

Post-mortem studies in the prefrontal cortex and hippocampal formation from schizophrenia patients have revealed significant disruptions in the expression molecules associated with cytoarchitecture, synaptic structure, function, and plasticity, known to be regulated in part by brain derived neurotrophic factor (BDNF). Interestingly, several studies using postmortem brain tissue from individuals diagnosed with schizophrenia have revealed a significant reduction in BDNF mRNA and protein levels in the dorsolateral prefrontal cortex (DLPFC), hippocampus and related areas; however, differentiating the effects of illness from antipsychotic history has remained difficult. We hypothesized that chronic antipsychotic treatment may contribute to the altered BDNF mRNA and protein expression observed in post-mortem brains of individuals diagnosed with schizophrenia. To address the influence of antipsychotic administration on BDNF expression in the primate brain, rhesus monkeys orally administered haloperidol, clozapine, or vehicle twice daily for 180 days. We found BDNF splice variants 4 and 5 in the DLPFC and variant 2 in the EC were significantly down-regulated following chronic administration of haloperidol. In addition, proBDNF and mature BDNF expression in the DLPFC, but not the EC, were significantly reduced. Based on the known regulation of BDNF expression by BDNF-AS, we assessed the expression of this lncRNA and found expression was significantly upregulated in the DLPFC, but not EC. The results of the present study provide evidence of haloperidol-induced regulation of BDNF mRNA and protein expression in the DLFPC and suggest an important role for BDNF-AS in this regulation. Given the role of BDNF in synaptic plasticity, neuronal survival and maintenance, aberrant expression induced by haloperidol likely has significant ramifications for neuronal populations and circuits in primate cortex.

4.
Phytochemistry ; 189: 112830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157637

RESUMO

Three previously undescribed diketomorpholine natural products, along with the known phenalenones, herqueinone and norherqueinone, were isolated from the mycoparasitic fungal strain G1071, which was identified as a Penicillium sp. in the section Sclerotiora. The structures were established by analyzing NMR data and mass spectrometry fragmentation patterns. The absolute configurations of deacetyl-javanicunine A, javanicunine C, and javanicunine D, were assigned by examining ECD spectra and Marfey's analysis. The structural diversity generated by this fungal strain was interesting, as only a few diketomorpholines (~17) have been reported from nature.


Assuntos
Penicillium , Fungos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular
5.
Mol Psychiatry ; 25(4): 750-760, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30214040

RESUMO

Multiple lines of evidence point to glutamatergic signaling in the postsynaptic density (PSD) as a pathophysiologic mechanism in schizophrenia. Integral to PSD glutamatergic signaling is reciprocal interplay between GluN and mGluR5 signaling. We examined agonist-induced mGluR5 signaling in the postmortem dorsolateral prefrontal cortex (DLPFC) derived from 17 patients and age-matched and sex-matched controls. The patient group showed a striking reduction in mGluR5 signaling, manifested by decreases in Gq/11 coupling and association with PI3K and Homer compared to controls (p < 0.01 for all). This was accompanied by increases in serine and tyrosine phosphorylation of mGluR5, which can decrease mGluR5 activity via desensitization (p < 0.01). In addition, we find altered protein-protein interaction (PPI) of mGluR5 with RGS4, norbin, Preso 1 and tamalin, which can also attenuate mGluR5 activity. We previously reported molecular underpinnings of GluN hypofunction (decreased GluN2 phosphorylation) and here we show those of reduced mGluR5 signaling in schizophrenia. We find that reduced GluN2 phosphorylation can be precipitated by attenuated mGluR5 activity and that increased mGluR5 phosphorylation can result from decreased GluN function, suggesting a reciprocal interplay between the two pathways in schizophrenia. Interestingly, the patient group showed decreased mGluR5-GluN association (p < 0.01), a mechanistic basis for the reciprocal facilitation. In sum, we present the first direct evidence for mGluR5 hypoactivity, propose a reciprocal interplay between GluN and mGluR5 pathways as integral to glutamatergic dysregulation and suggest protein-protein interactions in mGluR5-GluN complexes as potential targets for intervention in schizophrenia.


Assuntos
Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Fosforilação , Densidade Pós-Sináptica/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/fisiologia , Transdução de Sinais/efeitos dos fármacos
6.
Addict Biol ; 24(5): 874-885, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29949228

RESUMO

Kratom, derived from the plant Mitragyna speciosa, is receiving increased attention as an alternative to traditional opiates and as a replacement therapy for opiate dependence. Mitragynine (MG) and 7-hydroxymitragynine (7-HMG) are major psychoactive constituents of kratom. While MG and 7-HMG share behavioral and analgesic properties with morphine, their reinforcing effects have not been examined to date. 7-HMG, but not MG, substituted for morphine self-administration in a dose-dependent manner in the rat self-administration paradigm. Following the substitution procedure, re-assessment of morphine self-administration revealed a significant increase following 7-HMG and a significant decrease following MG substitution. In a separate cohort, 7-HMG, but not MG, engendered and maintained intravenous self-administration in a dose-dependent manner. The effects of pretreatment with nalxonaxine (NLXZ), a µ1 opiate receptor antagonist, and naltrindole (NTI), a δ opiate receptor antagonist, on 7-HMG and morphine self-administration were also examined. Both NLXZ and NTI reduced 7-HMG self-administration, whereas only NLXZ decreased morphine intake. The present results are the first to demonstrate that 7-HMG is readily self-administered, and the reinforcing effects of 7-HMG are mediated in part by µ and δ opiate receptors. In addition, prior exposure to 7-HMG increased subsequent morphine intake whereas prior exposure to MG decreased morphine intake. The present findings indicate that MG does not have abuse potential and reduces morphine intake, desired characteristics of candidate pharmacotherapies for opiate addiction and withdrawal, whereas 7-HMG should be considered a kratom constituent with high abuse potential that may also increase the intake of other opiates.


Assuntos
Analgésicos Opioides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Morfina/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Mitragyna , Naloxona/análogos & derivados , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos , Receptores Opioides delta , Receptores Opioides mu , Autoadministração
7.
Nat Neurosci ; 19(11): 1442-1453, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668389

RESUMO

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco
8.
J Neurosci ; 36(15): 4248-58, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076423

RESUMO

Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-ß (Aß) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Aß increase, a hippocampus-restricted decrease in the protein and mRNA for the Aß-degrading enzyme neprilysin (NEP) was found, whereas various Aß-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Aß. SIGNIFICANCE STATEMENT: Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-ß (Aß), and the Aß-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in an in vivo model highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Química Encefálica , Diabetes Mellitus Tipo 1/metabolismo , Hipocampo/metabolismo , Resistência à Insulina , Neprilisina/metabolismo , Proteínas tau/metabolismo , Animais , Chlorocebus aethiops , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Masculino , Fosforilação , Transdução de Sinais
9.
Schizophr Res ; 170(2-3): 235-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26776227

RESUMO

Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted.


Assuntos
Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Clozapina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Administração Oral , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Contagem de Células , Feminino , Citometria de Fluxo , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Haloperidol/farmacologia , Imuno-Histoquímica , Macaca , Imageamento por Ressonância Magnética , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Tamanho do Órgão , Distribuição Aleatória , Substância Branca/anatomia & histologia , Substância Branca/metabolismo
10.
J Neuroimmune Pharmacol ; 10(3): 493-505, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25749646

RESUMO

Cocaine abuse in HIV patients accelerates the progression and severity of neuropathology, motor impairment and cognitive dysfunction compared to non-drug using HIV patients. Cocaine and HIV interact with the dopamine transporter (DAT); however, the effect of their interaction on DAT binding remains understudied. The present study compared the dose-response functions for intravenous self-administration of cocaine and heroin between male HIV-1 transgenic (HIV-1 Tg) and Fischer 344 rats. The cocaine and heroin dose-response functions exhibit an inverted U-shape for both HIV-1 Tg and F344 rats. For cocaine, the number of infusions for each dose on the ascending limb was greater for HIV-1 Tg versus F344 rats. No significant changes in the heroin dose-response function were observed in HIV-1 Tg animals. Following the conclusion of self-administration experiments, DAT binding was assessed in striatal membranes. Saturation binding of the cocaine analog [(125)I] 3ß-(4-iodophenyl)tropan-2ß-carboxylic acid methyl ester ([(125)I]RTI-55) in rat striatal membranes resulted in binding curves that were best fit to a two-site binding model, allowing for calculation of dissociation constant (Kd) and binding density (Bmax) values that correspond to high- and low-affinity DAT binding sites. Control HIV-1 Tg rats exhibited a significantly greater affinity (i.e., decrease in Kd value) in the low-affinity DAT binding site compared to control F344 rats. Furthermore, cocaine self-administration in HIV-1 Tg rats increased low-affinity Kd (i.e., decreased affinity) compared to levels observed in control F344 rats. Cocaine also increased low-affinity Bmax in HIV-1 Tg rats as compared to controls, indicating an increase in the number of low-affinity DAT binding sites. F344 rats did not exhibit any change in high- or low-affinity Kd or Bmax values following cocaine or heroin self-administration. The increase in DAT affinity in cocaine HIV-1 Tg rats is consistent with the leftward shift of the ascending limb of the cocaine dose-response curve observed in HIV-1 Tg vs. F344 rats, and has major implications for the function of cocaine binding to DAT in HIV patients. The absence of HIV-related changes in heroin intake are likely due to less dopaminergic involvement in the mediation of heroin reward, further emphasizing the preferential influence of HIV on dopamine-related behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Infecções por HIV/metabolismo , Neostriado/metabolismo , Animais , Cocaína/administração & dosagem , Cocaína/análogos & derivados , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Heroína/administração & dosagem , Heroína/farmacologia , Masculino , Entorpecentes/administração & dosagem , Entorpecentes/farmacologia , Neostriado/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Autoadministração
11.
Synapse ; 68(10): 437-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24916769

RESUMO

Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3ß-(4-iodophenyl)tropan-2ß-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc.


Assuntos
Cocaína/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Heroína/administração & dosagem , Entorpecentes/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Administração Intravenosa , Animais , Membrana Celular/metabolismo , Cocaína/análogos & derivados , Cocaína/farmacocinética , Combinação de Medicamentos , Drogas Ilícitas , Radioisótopos do Iodo/farmacocinética , Masculino , Núcleo Accumbens/metabolismo , Compostos Radiofarmacêuticos , Ratos Endogâmicos F344 , Autoadministração
12.
Alcohol Clin Exp Res ; 38(7): 1973-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24942558

RESUMO

BACKGROUND: An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is comorbid with damage to major organs including heart, lungs, liver, pancreas, and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of ethanol (EtOH) and they metabolize it more rapidly than primates. METHODS: The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates, specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent per day) over long periods of time (12 to 30 months) with concomitant pathological changes in endocrine, hepatic, and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the EtOH-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. RESULTS: The MATRR is a unique postmortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer EtOH using a standardized experimental paradigm to the broader alcohol research community. CONCLUSIONS: This resource provides a translational platform from which we can better understand the disease processes associated with alcoholism.


Assuntos
Alcoolismo , Encéfalo , Glândulas Endócrinas , Fígado , Bancos de Tecidos , Animais , Biologia Computacional , Etanol/administração & dosagem , Feminino , Haplorrinos , Masculino , Autoadministração , Manejo de Espécimes
13.
Drug Alcohol Depend ; 136: 135-42, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24467872

RESUMO

BACKGROUND: Chronic alcohol consumption reduces brain serotonin and alters the synaptic mechanisms involved in memory formation. Hippocampal 5-HT1A receptors modulate these mechanisms, but the neuroadaptive response of 5HT1A receptors to chronic alcohol self-administration is not well understood. METHODS: Hippocampal tissue from monkeys that voluntarily self-administered ethanol for 12 months (n=9) and accompanying controls (n=8) were prepared for in vitro receptor autoradiography and laser capture microdissection. The 5-HT1A receptor antagonist, [(3)H]MPPF, and the agonist, [(3)H]8-OH-DPAT, were used to measure total and G-protein coupled 5-HT1A receptors respectively. The expression of the genes encoding the 5-HT1A receptor and its trafficking protein Yif1B was measured in microdissected dentate gyrus (DG) granule cells and CA1 pyramidal neurons. RESULTS: An increase in G-protein coupled, but not total, receptors was observed in the posterior pyramidal cell layer of CA1 in ethanol drinkers compared to controls. Chronic ethanol self-administration was also associated with an up-regulation of total and G-protein coupled 5-HT1A receptors in the posterior DG polymorphic layer. Changes in receptor binding were not associated with concomitant changes in 5-HT1A receptor mRNA expression. Chronic ethanol self-administration was associated with a significant increase in Yif1B gene expression in posterior CA1 pyramidal neurons. CONCLUSIONS: Chronic, ethanol self-administration up-regulates hippocampal 5-HT1A receptor density in a region-specific manner that does not appear to be due to alterations at the level of transcription but instead may be due to increased receptor trafficking. Further exploration of the mechanisms mediating chronic ethanol-induced 5-HT1A receptor up-regulation and how hippocampal neurotransmission is altered is warranted.


Assuntos
Alcoolismo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , 8-Hidroxi-2-(di-n-propilamino)tetralina , Alcoolismo/genética , Aminopiridinas/metabolismo , Animais , Autorradiografia , DNA Complementar/biossíntese , DNA Complementar/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Abrigo para Animais , Macaca fascicularis , Masculino , Piperazinas/metabolismo , Reação em Cadeia da Polimerase , RNA/biossíntese , RNA/isolamento & purificação , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Autoadministração , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina
14.
Neurosci Lett ; 563: 1-5, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24440617

RESUMO

The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity.


Assuntos
Comportamento Animal , Região CA1 Hipocampal/metabolismo , Giro Denteado/metabolismo , Depressão/metabolismo , Neuroglia/metabolismo , Sinapses/metabolismo , Animais , Biomarcadores/metabolismo , Depressão/psicologia , Estradiol/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Macaca fascicularis , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
15.
Neuropsychopharmacology ; 39(1): 202-19, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23979119

RESUMO

There has been significant progress in personalized drug development. In large part, this has taken place in the oncology field and been due to the ability of researchers/clinicians to discover and develop novel drug development tools (DDTs), such as biomarkers. In cancer treatment research, biomarkers have permitted a more accurate pathophysiological characterization of an individual patient, and have enabled practitioners to target mechanistically the right drug, to the right patient, at the right time. Similar to cancer, patients with substance use disorders (SUDs) present clinically with heterogeneous symptomatology and respond variably to therapeutic interventions. If comparable biomarkers could be identified and developed for SUDs, significant diagnostic and therapeutic advances could be made. In this review, we highlight current opportunities and difficulties pertaining to the identification and development of biomarkers for SUDs. We focus on cocaine dependence as an example. Putative diagnostic, pharmacodynamic (PD), and predictive biomarkers for cocaine dependence are discussed across a range of methodological approaches. A possible cocaine-dependent clinical outcome assessment (COA)--another type of defined DDT--is also discussed. At present, biomarkers for cocaine dependence are in their infancy. Much additional research will be needed to identify, validate, and qualify these putative tools prior to their potential use for medications development and/or application to clinical practice. However, with a large unmet medical need and an estimated market size of several hundred million dollars per year, if developed, biomarkers for cocaine dependence will hold tremendous value to both industry and public health.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Descoberta de Drogas/métodos , Animais , Sistema Cardiovascular/metabolismo , Transtornos Relacionados ao Uso de Cocaína/diagnóstico , Humanos , Neuroimagem , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Resultado do Tratamento
16.
Front Psychiatry ; 4: 88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970867

RESUMO

Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTH(Ser31) in all regions. In addition, a slight but significant reduction in phosphorylated pTH(Ser40) was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.

17.
Nat Commun ; 4: 1955, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23736082

RESUMO

Proteoglycans like syndecan-3 have complex signaling roles in addition to their function as structural components of the extracellular matrix. Here, we show that syndecan-3 in the lateral hypothalamus has an unexpected new role in limiting compulsive cocaine intake. In particular, we observe that syndecan-3 null mice self-administer greater amounts of cocaine than wild-type mice. This effect can be rescued by re-expression of syndecan-3 in the lateral hypothalamus with an adeno-associated viral vector. Adeno-associated viral vector delivery of syndecan-3 to the lateral hypothalamus also reduces motivation for cocaine in normal mice. Syndecan-3 limits cocaine intake by modulating the effects of glial-cell-line-derived neurotrophic factor, which uses syndecan-3 as an alternative receptor. Our findings indicate syndecan-3-dependent signaling as a novel therapeutic target for the treatment of cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hipotálamo/metabolismo , Sindecana-3/metabolismo , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Wistar , Sacarose/metabolismo , Sindecana-3/deficiência
18.
J Neurochem ; 122(1): 138-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22443145

RESUMO

Cocaine/heroin combinations (speedball) exert synergistic neurochemical and behavioral effects that are thought to contribute to the increased abuse potential and subjective effects reported by polydrug users. In vivo fast-scan cyclic voltammetry was used to examine the effects of chronic intravenous self-administration (25 consecutive sessions) of cocaine (250 µg/inf), heroin (4.95 µg/inf) and speedball (250/4.95 µg/inf cocaine/heroin) on changes in electrically evoked dopamine (DA) efflux, maximal rate of DA uptake (V(max)) and the apparent affinity (K(m)) of the DA transporter in the nucleus accumbens. The increase in electrically evoked DA was comparable following cocaine and speedball injection; however, heroin did not increase evoked DA. DA transporter K(m) values were similarly elevated following cocaine and speedball, but unaffected by heroin. However, speedball self-administration significantly increased baseline V(max), while heroin and cocaine did not change baseline V(max), compared with the baseline V(max) values of drug-naïve animals. Overall, elevated DA clearance is a likely consequence of synergistic elevations of nucleus accumbens extracellular DA concentrations by chronic speedball self-administration, as reported previously in microdialysis studies. The present results indicate neuroadaptive processes that are unique to cocaine/heroin combinations and cannot be readily explained by simple additivity of changes observed with cocaine and heroin alone.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Heroína/administração & dosagem , Entorpecentes/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Animais , Condicionamento Operante/efeitos dos fármacos , Combinação de Medicamentos , Eletroquímica , Infusões Intraventriculares , Masculino , Microdiálise , Ratos , Ratos Endogâmicos F344 , Esquema de Reforço , Autoadministração , Fatores de Tempo
19.
Pharmacol Biochem Behav ; 100(4): 705-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22005598

RESUMO

Functional genomics and proteomics approaches are being employed to evaluate gene and encoded protein expression changes with the tacit goal to find novel targets for drug discovery. Genome-wide association studies (GWAS) have attempted to identify valid candidate genes through single nucleotide polymorphism (SNP) analysis. Furthermore, microarray analysis of gene expression in brain regions and discrete cell populations has enabled the simultaneous quantitative assessment of relevant genes. The ability to associate gene expression changes with neuropsychiatric disorders, including bipolar disorder (BP), and their response to therapeutic drugs provides a novel means for pharmacotherapeutic interventions. This review summarizes gene and pathway targets that have been identified in GWAS studies and expression profiling of human postmortem brain in BP, with an emphasis on glutamate receptors (GluRs). Although functional genomic assessment of BP is in its infancy, results to date point towards a dysregulation of GluRs that bear some similarity to schizophrenia (SZ), although the pattern is complex, and likely to be more complementary than overlapping. The importance of single population expression profiling of specific neurons and intrinsic circuits is emphasized, as this approach provides informative gene expression profile data that may be underappreciated in regional studies with admixed neuronal and non-neuronal cell types.


Assuntos
Transtorno Bipolar/genética , Perfilação da Expressão Gênica , Receptores de Glutamato/genética , Estudo de Associação Genômica Ampla , Humanos
20.
Neuropharmacology ; 60(2-3): 312-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20869972

RESUMO

Cocaine/heroin combinations (speedball) induce a synergistic elevation in extracellular dopamine concentrations ([DA](e)) in the nucleus accumbens (NAc) that can explain the increased abuse liability of speedball. To further delineate the mechanism of this neurochemical synergism, in vivo fast-scan cyclic voltammetry (FSCV) was used to compare NAc DA release and reuptake kinetic parameters following acute administration of cocaine, heroin and speedball in drug-naïve rats. These parameters were extracted from accumbal DA overflow induced by electrical stimulation of the ventral tegmental area. Evoked DA efflux was increased following both cocaine and speedball delivery, whereas heroin did not significantly change evoked DA release from baseline. DA efflux was significantly greater following cocaine compared to speedball. However, DA transporter (DAT) apparent affinity (K(m)) values were similarly elevated following cocaine and speedball administration, but unaffected by heroin. Neither drug induced substantial changes in the maximal reuptake rate (V(max)). These data, combined with published microdialysis and electrophysiological results, indicate that the combination of cocaine-induced competitive inhibition of DAT and the increase in the DA release elicited by heroin is responsible for the synergistic increase in ([DA](e)) induced by speedball.


Assuntos
Cocaína/administração & dosagem , Dopamina/metabolismo , Heroína/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Animais , Sinergismo Farmacológico , Estimulação Elétrica/métodos , Masculino , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...