Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10729-10739, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829283

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been detected in an array of environmental media due to their ubiquitous use in industrial and consumer products as well as potential release from fluorochemical manufacturing facilities. During their manufacture, many fluorotelomer (FT) facilities rely on neutral intermediates in polymer production including the FT-alcohols (FTOHs). These PFAS are known to transform to the terminal acids (perfluoro carboxylic acids; PFCAs) at rates that vary with environmental conditions. In the current study on soils from a FT facility, we employed gas chromatography coupled with conventional- and high-resolution mass spectrometry (GC-MS and GC-HRMS) to investigate the profile of these precursor compounds, the intermediary secondary alcohols (sFTOHs), FT-acrylates (FTAcr), and FT-acetates (FTAce) in soils around the former FT-production facility. Of these precursors, the general trend in detection intensity was [FTOHs] > [sFTOHs] > [FTAcrs], while for the FTOHs, homologue intensities generally were [12:2 FTOH] > [14:2 FTOH] > [16:2 FTOH] > [10:2 FTOH] > [18:2 FTOH] > [20:2 FTOH] > [8:2 FTOH] ∼ [6:2 FTOH]. The corresponding terminal acids were also detected in all soil samples and positively correlated with the precursor concentrations. GC-HRMS confirmed the presence of industrial manufacturing byproducts such as FT-ethers and FT-esters and aided in the tentative identification of previously unreported dimers and other compounds. The application of GC-HRMS to the measurement and identification of precursor PFAS is in its infancy, but the methodologies described here will help refine its use in tentatively identifying these compounds in the environment.


Assuntos
Fluorocarbonos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental , Instalações Industriais e de Manufatura
2.
Microbiol Spectr ; 11(6): e0268023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966200

RESUMO

IMPORTANCE: Transmission of V. alginolyticus occurs opportunistically through direct seawater exposure and is a function of its abundance in the environment. Like other Vibrio spp., V. alginolyticus are considered conditionally rare taxa in marine waters, with populations capable of forming large, short-lived blooms under specific environmental conditions, which remain poorly defined. Prior research has established the importance of temperature and salinity as the major determinants of Vibrio geographical and temporal range. However, bloom formation can be strongly influenced by other factors that may be more episodic and localized, such as changes in iron availability. Here we confirm the broad temperature and salinity tolerance of V. alginolyticus and demonstrate the importance of iron supplementation as a key factor for growth in the absence of thermal or osmotic stress. The results of this research highlight the importance of episodic iron input as a crucial metric to consider for the assessment of V. alginolyticus risk.


Assuntos
Ferro , Vibrio alginolyticus , Vibrio alginolyticus/genética
3.
Toxics ; 11(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37235277

RESUMO

Concern over per- and polyfluoroalkyl substances (PFAS) has increased as more is learned about their environmental presence, persistence, and bioaccumulative potential. The limited monitoring, toxicokinetic (TK), and toxicologic data available are inadequate to inform risk across this diverse domain. Here, 73 PFAS were selected for in vitro TK evaluation to expand knowledge across lesser-studied PFAS alcohols, amides, and acrylates. Targeted methods developed using gas chromatography-tandem mass spectrometry (GC-MS/MS) were used to measure human plasma protein binding and hepatocyte clearance. Forty-three PFAS were successfully evaluated in plasma, with fraction unbound (fup) values ranging from 0.004 to 1. With a median fup of 0.09 (i.e., 91% bound), these PFAS are highly bound but exhibit 10-fold lower binding than legacy perfluoroalkyl acids recently evaluated. Thirty PFAS evaluated in the hepatocyte clearance assay showed abiotic loss, with many exceeding 60% loss within 60 min. Metabolic clearance was noted for 11 of the 13 that were successfully evaluated, with rates up to 49.9 µL/(min × million cells). The chemical transformation simulator revealed potential (bio)transformation products to consider. This effort provides critical information to evaluate PFAS for which volatility, metabolism, and other routes of transformation are likely to modulate their environmental fates.

4.
Harmful Algae ; 125: 102425, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220978

RESUMO

Cyanobacteria are well known producers of bioactive metabolites, including harmful substances. The recently discovered "eagle killer" neurotoxin aetokthonotoxin (AETX) is produced by the epiphytic cyanobacterium Aetokthonos hydrillicola growing on invasive water thyme (Hydrilla verticillata). The biosynthetic gene cluster of AETX was previously identified from an Aetokthonos strain isolated from the J. Strom Thurmond Reservoir, Georgia, USA. Here, a PCR protocol for easy detection of AETX-producers in environmental samples of plant-cyanobacterium consortia was designed and tested. Three different loci of the AETX gene cluster were amplified to confirm the genetic potential for AETX production, along with two variable types of rRNA ITS regions to confirm the homogeneity of the producer´s taxonomic identity. In samples of Hydrilla from three Aetokthonos-positive reservoirs and one Aetokthonos-negative lake, the PCR of all four loci provided results congruent with the Aetokthonos presence/absence detected by light and fluorescence microscopy. The production of AETX in the Aetokthonos-positive samples was confirmed using LC-MS. Intriguingly, in J. Strom Thurmond Reservoir, recently Hydrilla free, an Aetokthonos-like cyanobacterium was found growing on American water-willow (Justicia americana). Those specimens were positive for all three aet markers but contained only minute amounts of AETX. The obtained genetic information (ITS rRNA sequence) and morphology of the novel Aetokthonos distinguished it from all the Hydrilla-hosted A. hydrillicola, likely at the species level. Our results suggest that the toxigenic Aetokthonos spp. can colonize a broader array of aquatic plants, however the level of accumulation of the toxin may be driven by host-specific interactions such as the locally hyper-accumulated bromide in Hydrilla.


Assuntos
Lagos , Reação em Cadeia da Polimerase , Cromatografia Líquida , Espectrometria de Massas
5.
Chem Res Toxicol ; 36(3): 402-419, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821828

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse set of commercial chemicals widely detected in humans and the environment. However, only a limited number of PFAS are associated with epidemiological or experimental data for hazard identification. To provide developmental neurotoxicity (DNT) hazard information, the work herein employed DNT new approach methods (NAMs) to generate in vitro screening data for a set of 160 PFAS. The DNT NAMs battery was comprised of the microelectrode array neuronal network formation assay (NFA) and high-content imaging (HCI) assays to evaluate proliferation, apoptosis, and neurite outgrowth. The majority of PFAS (118/160) were inactive or equivocal in the DNT NAMs, leaving 42 active PFAS that decreased measures of neural network connectivity and neurite length. Analytical quality control indicated 43/118 inactive PFAS samples and 10/42 active PFAS samples were degraded; as such, careful interpretation is required as some negatives may have been due to loss of the parent PFAS, and some actives may have resulted from a mixture of parent and/or degradants of PFAS. PFAS containing a perfluorinated carbon (C) chain length ≥8, a high C:fluorine ratio, or a carboxylic acid moiety were more likely to be bioactive in the DNT NAMs. Of the PFAS positives in DNT NAMs, 85% were also active in other EPA ToxCast assays, whereas 79% of PFAS inactives in the DNT NAMs were active in other assays. These data demonstrate that a subset of PFAS perturb neurodevelopmental processes in vitro and suggest focusing future studies of DNT on PFAS with certain structural feature descriptors.


Assuntos
Fluorocarbonos , Síndromes Neurotóxicas , Humanos , Síndromes Neurotóxicas/metabolismo , Neurônios/metabolismo , Crescimento Neuronal , Apoptose , Fluorocarbonos/toxicidade
6.
Integr Environ Assess Manag ; 19(1): 9-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35412009

RESUMO

Chemical exposure estimation through the dermal route is an underemphasized area of ecological risk assessment for terrestrial animals. Currently, there are efforts to create exposure models to estimate doses from this pathway for use in ecological risk assessment. One significant limitation has been insufficient published data to characterize exposure and to support the selection and parameterization of appropriate models, particularly for amphibians in terrestrial habitats. Recent publications measuring pesticide doses to terrestrial-phase amphibians have begun to rectify this situation. We collated and summarized available measurements of terrestrial amphibian dermal exposure to pesticides from 11 studies in which researchers measured tissue concentrations associated with known pesticide experimental application rates. This data set included tissue concentrations in 11 amphibian species and 14 different pesticides. We then compared the results of two screening exposure models that differed based on surface area scaling approaches as a function of body weight (one based on birds as surrogates for amphibians and another amphibian-specific) to the measured tissue residue concentrations. We define a false-negative rate for each screening model as the proportion of amphibians for which the predicted concentration is less than the observed concentration (i.e., underestimate), contrary to the intent of screening models, which are intended to have a bias for higher exposure concentrations. The screening model that uses birds as surrogates did not have any instances where estimated expected avian doses were less than measured amphibian body burdens. When using the amphibian-specific exposure model that corrected for differences between avian and amphibian surface area, measured concentrations were greater than model estimates for 11.3% of the 1158 comparisons. The database of measured pesticide concentrations in terrestrial amphibians is provided for use in calculating bioconcentration factors and for future amphibian dermal exposure model development. Integr Environ Assess Manag 2023;19:9-16. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Anfíbios , Praguicidas , Animais , Anfíbios/metabolismo , Praguicidas/toxicidade , Praguicidas/análise , Ecossistema , Solo/química
7.
Toxicol Appl Pharmacol ; 459: 116355, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535553

RESUMO

Per- and polyfluoroalkyl substances (PFAS) represent a large chemical class lacking hazard, toxicokinetic, and exposure information. To accelerate PFAS hazard evaluation, new approach methodologies (NAMs) comprised of in vitro high-throughput toxicity screening, toxicokinetic data, and computational modeling are being employed in read across strategies to evaluate the larger PFAS landscape. A critical consideration to ensure robust evaluations is a parallel assessment of the quality of the screening stock solutions, where dimethyl sulfoxide (DMSO) is often the diluent of choice. Challenged by the lack of commercially available reference standards for many of the selected PFAS and reliance on mass spectrometry approaches for such an evaluation, we developed a high-throughput framework to evaluate the quality of screening stocks for 205 PFAS selected for these NAM efforts. Using mass spectrometry coupled with either liquid or gas chromatography, a quality scoring system was developed that incorporated observations during mass spectral examination to provide a simple pass or fail notation. Informational flags were used to further describe findings regarding parent analyte presence through accurate mass identification, evidence of contaminants and/or degradation, or further describe characteristics such as isomer presence. Across the PFAS-DMSO stocks tested, 148 unique PFAS received passing quality scores to allow for further in vitro testing whereas 57 received a failing score primarily due to detection issues or confounding effects of DMSO. Principle component analysis indicated vapor pressure and Henry's Law Constant as top indicators for a failed quality score for those analyzed by gas chromatography. Three PFAS in the hexafluoropropylene oxide family failed due to degradation in DMSO. As the PFAS evaluated spanned over 20 different structural categories, additional commentary describes analytical observations across specific groups related to PFAS stock composition, detection, stability, and methodologic considerations that will be useful for informing future analytical assessment and downstream HTS efforts. The high-throughput stock quality scoring workflow presented holds value as a tool to evaluate chemical presence and quality efficiently and for informing data inclusion in PFAS or other NAM screening efforts.


Assuntos
Dimetil Sulfóxido , Fluorocarbonos , Ensaios de Triagem em Larga Escala , Simulação por Computador , Excipientes , Fluorocarbonos/toxicidade
8.
Sci Total Environ ; 838(Pt 3): 155666, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598671

RESUMO

One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in real world scenarios. Frequently, data derived from laboratory studies of single stressors are used to estimate risk parameters and do not adequately address scenarios where other stressors exist. Emerging 'omic technologies, notably metabolomics, provide an opportunity to address the uncertainties surrounding ecological risk assessment of multiple stressors. The objective of this study was to use metabolomic profiling to investigate the effect of multiple stressors on amphibian metamorphs. We exposed post-metamorphosis (180 days) southern leopard frogs (Lithobates sphenocephala) to the insecticide carbaryl (480 µg/L), predation stress, and a combined pesticide and predation stress treatment. Corticosterone analysis revealed mild support for an induction in response to predation stress alone but strongly suggests that carbaryl exposure, alone or in combination with predation cues, can significantly elevate this known biomarker in amphibians. Metabolomics analysis accurately classed, based on relative nearness, carbaryl and predation induced changes in the hepatic metabolome and biochemical fluxes appear to be associated with a similar biological response. Support vector machine analysis with recursive feature elimination of the acquired metabolomic spectra demonstrated 85-96% classification accuracy among control and all treatment groups when using the top 75 ranked retention time bins. Biochemical fluxes observed in the groups exposed to carbaryl, predation, and the combined treatment include amino acids, sugar derivatives, and purine nucleotides. Ultimately, this methodology could be used to interpret short-term toxicity assays and the presence of environmental stressors to overall metabolomic effects in non-target organisms.


Assuntos
Carbaril , Praguicidas , Animais , Carbaril/toxicidade , Larva , Metabolômica , Praguicidas/toxicidade , Ranidae
9.
Science ; 375(6580): eabg9065, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113710

RESUMO

Over the past several years, the term PFAS (per- and polyfluoroalkyl substances) has grown to be emblematic of environmental contamination, garnering public, scientific, and regulatory concern. PFAS are synthesized by two processes, direct fluorination (e.g., electrochemical fluorination) and oligomerization (e.g., fluorotelomerization). More than a megatonne of PFAS is produced yearly, and thousands of PFAS wind up in end-use products. Atmospheric and aqueous fugitive releases during manufacturing, use, and disposal have resulted in the global distribution of these compounds. Volatile PFAS facilitate long-range transport, commonly followed by complex transformation schemes to recalcitrant terminal PFAS, which do not degrade under environmental conditions and thus migrate through the environment and accumulate in biota through multiple pathways. Efforts to remediate PFAS-contaminated matrices still are in their infancy, with much current research targeting drinking water.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Animais , Biodegradação Ambiental , Água Potável/química , Exposição Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Recuperação e Remediação Ambiental , Polímeros de Fluorcarboneto/análise , Polímeros de Fluorcarboneto/química , Polímeros de Fluorcarboneto/toxicidade , Fluorocarbonos/análise , Fluorocarbonos/química , Fluorocarbonos/toxicidade , Halogenação , Humanos , Poluição Química da Água/análise
10.
Environ Toxicol Chem ; 41(1): 122-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967044

RESUMO

The increasing use of agrochemicals, alone and in combination, has been implicated as a potential causative factor in the decline of amphibians worldwide. Fertilizers and pesticides are frequently combined into single-use tank mixtures for agricultural applications to decrease costs while meeting the food demands of a growing human population. Limited data are available on the effects of increased nitrogen levels in nontarget species, such as amphibians, and therefore investigating alterations in the nitrogen cycle and its impacts on amphibians needs to be considered in best management practices going forward. The objective of the present study was to elucidate the impact of fertilizer (urea) and herbicide (atrazine and/or alachlor) tank mixtures on the hepatic metabolome of juvenile leopard frogs as well as to investigate alterations in oxidative stress by relating these changes to glutathione (GSH) levels. Herbicide exposure only moderately increased this parameter in amphibians, however, urea alone and in combination with either atrazine or alachlor statistically elevated GSH levels. Interestingly, urea also inhibited pesticide uptake: calculated bioconcentration factors were greatly decreased for atrazine and alachlor when urea was present in the exposure mixture. Metabolomic profiling identified fluxes in hepatic metabolites that are involved in GSH and carbohydrate metabolic processes as well as altered intermediates in the urea cycle. Ultimately, understanding the biological impacts of nitrogenous fertilizers alone and in combination with pesticide exposure will inform best management practices to conserve declining amphibian populations worldwide. Environ Toxicol Chem 2022;41:122-133. © 2021 SETAC.


Assuntos
Atrazina , Herbicidas , Praguicidas , Animais , Atrazina/metabolismo , Atrazina/toxicidade , Fertilizantes/toxicidade , Glutationa/metabolismo , Herbicidas/metabolismo , Herbicidas/toxicidade , Praguicidas/metabolismo , Rana pipiens , Ranidae , Ureia
11.
Artigo em Inglês | MEDLINE | ID: mdl-34894529

RESUMO

The U.S. EPA frequently uses avian or fish toxicity data to set protective standards for amphibians in ecological risk assessments. However, this approach does not always adequately represent aquatic-dwelling and terrestrial-phase amphibian exposure data. For instance, it is accepted that early life stage tests for fish are typically sensitive enough to protect larval amphibians, however, metamorphosis from tadpole to a terrestrial-phase adult relies on endocrine cues that are less prevalent in fish but essential for amphibian life stage transitions. These differences suggest that more robust approaches are needed to adequately elucidate the impacts of pesticide exposure in amphibians across critical life stages. Therefore, in the current study, methodology is presented that can be applied to link the perturbations in the metabolomic response of larval zebrafish (Danio rerio), a surrogate species frequently used in ecotoxicological studies, to those of African clawed frog (Xenopus laevis) tadpoles following exposure to three high-use pesticides, bifenthrin, chlorothalonil, or trifluralin. Generally, D. rerio exhibited greater metabolic perturbations in both number and magnitude across the pesticide exposures as opposed to X. laevis. This suggests that screening ecological risk assessment surrogate toxicity data would sufficiently protect amphibians at the single life stage studied but care needs to be taken to understand the suite of metabolic requirements of each developing species. Ultimately, methodology presented, and data gathered herein will help inform the applicability of metabolomic profiling in establishing the risk pesticide exposure poses to amphibians and potentially other non-target species.


Assuntos
Praguicidas , Peixe-Zebra , Animais , Larva/fisiologia , Praguicidas/toxicidade , Medição de Risco/métodos , Xenopus laevis
12.
Toxicol Sci ; 186(1): 118-133, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34927697

RESUMO

Development of in vitro new approach methodologies has been driven by the need for developmental neurotoxicity (DNT) hazard data on thousands of chemicals. The network formation assay characterizes DNT hazard based on changes in network formation but provides no mechanistic information. This study investigated nervous system signaling pathways and upstream physiological regulators underlying chemically induced neural network dysfunction. Rat primary cortical neural networks grown on microelectrode arrays were exposed for 12 days in vitro to cytosine arabinoside, 5-fluorouracil, domoic acid, cypermethrin, deltamethrin, or haloperidol as these exposures altered network formation in previous studies. RNA-seq from cells and gas chromatography/mass spectrometry analysis of media extracts collected on days in vitro 12 provided gene expression and metabolomic identification, respectively. The integration of differentially expressed genes and metabolites for each neurotoxicant was analyzed using ingenuity pathway analysis. All 6 compounds altered gene expression that linked to developmental disorders and neurological diseases. Other enriched canonical pathways overlapped among compounds of the same class; eg, genes and metabolites altered by both cytosine arabinoside and 5-fluorouracil exposures are enriched in axonal guidance pathways. Integrated analysis of upstream regulators was heterogeneous across compounds, but identified several transcriptomic regulators including CREB1, SOX2, NOTCH1, and PRODH. These results demonstrate that changes in network formation are accompanied by transcriptomic and metabolomic changes and that different classes of compounds produce differing responses. This approach can enhance information obtained from new approach methodologies and contribute to the identification and development of adverse outcome pathways associated with DNT.


Assuntos
Rotas de Resultados Adversos , Síndromes Neurotóxicas , Animais , Microeletrodos , Redes Neurais de Computação , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Ratos , Transcriptoma
13.
Sci Total Environ ; 779: 146358, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33752009

RESUMO

Pesticides are being applied at a greater extent than in the past. Once pesticides enter the ecosystem, many environmental factors can influence their residence time. These interactions can result in processes such as translocation, environmental degradation, and metabolic activation facilitating exposure to target and non-target species. Most anurans start off their life cycle in aquatic environments and then transition into terrestrial habitats. Their time in the aquatic environment is generally short; however, many important developmental stages occur during this tenure. Post-metamorphosis, most species spend many years on land but migrate back to the aquatic environment for breeding. Due to the importance of both the aquatic and terrestrial environments to the life stages of amphibians, we investigated how the route of exposure (i.e., uptake from contaminated soils vs. uptake from contaminated surface water) influences pesticide bioavailability and body burden for four pesticides (bifenthrin (BIF), chlorpyrifos (CPF), glyphosate (GLY), and trifloxystrobin (TFS)) as well as the impact on the hepatic metabolome of adult leopard frogs (Gosner stage 46 with 60-90 days post-metamorphosis). Body burden concentrations for amphibians exposed in water were significantly higher (ANOVA p < 0.0001) compared to amphibians exposed to contaminated soil across all pesticides studied. Out of 80 metabolites that were putatively identified, the majority expressed a higher abundance in amphibians that were exposed in pesticide contaminated water compared to soil. Ultimately, this research will help fill regulatory data gaps, aid in the creation of more accurate amphibian dermal uptake models and inform continued ecological risk assessment efforts.


Assuntos
Praguicidas , Animais , Carga Corporal (Radioterapia) , Ecossistema , Metaboloma , Praguicidas/análise , Praguicidas/toxicidade , Rana pipiens
14.
Science ; 371(6536)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33766860

RESUMO

Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.


Assuntos
Toxinas Bacterianas/toxicidade , Cianobactérias , Doenças Desmielinizantes/veterinária , Águias , Alcaloides Indólicos/toxicidade , Neurotoxinas/toxicidade , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Doenças das Aves/induzido quimicamente , Brometos/metabolismo , Bromo/análise , Caenorhabditis elegans/efeitos dos fármacos , Galinhas , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Genes Bacterianos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiologia , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Dose Letal Mediana , Família Multigênica , Neurotoxinas/biossíntese , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Sudeste dos Estados Unidos , Triptofano/metabolismo , Peixe-Zebra
15.
Environ Toxicol Chem ; 40(4): 1212-1221, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33289922

RESUMO

Most corn (Zea mays) seeds planted in the United States in recent years are coated with a seed treatment containing neonicotinoid insecticides. Abrasion of the seed coating generates insecticide-laden planter dust that disperses through the landscape during corn planting and has resulted in many "bee-kill" incidents in North America and Europe. We investigated the linkage between corn planting and honey bee colony success in a region dominated by corn agriculture. Over 3 yr we consistently observed an increased presence of corn seed treatment insecticides in bee-collected pollen and elevated worker bee mortality during corn planting. Residues of seed treatment neonicotinoids, clothianidin and thiamethoxam, detected in pollen positively correlated with cornfield area surrounding the apiaries. Elevated worker mortality was also observed in experimental colonies fed field-collected pollen containing known concentrations of corn seed treatment insecticides. We monitored colony growth throughout the subsequent year in 2015 and found that colonies exposed to higher insecticide concentrations exhibited slower population growth during the month of corn planting but demonstrated more rapid growth in the month following, though this difference may be related to forage availability. Exposure to seed treatment neonicotinoids during corn planting has clear short-term detrimental effects on honey bee colonies and may affect the viability of beekeeping operations that are dependent on maximizing colony size in the springtime. Environ Toxicol Chem 2021;40:1212-1221. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Inseticidas , Zea mays , Animais , Abelhas , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Sementes/química , Tiametoxam
16.
Artigo em Inglês | MEDLINE | ID: mdl-32827749

RESUMO

Adverse reproductive effects associated with gonadal intersex among freshwater fish could hold considerable implications for population sustainability. Presence of testicular oocytes (TO) is the most common form of intersex and is widespread among centrarchids (sunfishes) of North America and other freshwater teleosts. Placing TO within the toxicological context of adverse outcome pathways (AOPs) to assess ecological risk is a priority for ecotoxicologists due to the association of TO with harmful chemical exposure and adverse reproductive effects in some cases. However, key event relationships between EDC exposure, incidence of TO, and apical outcomes have yet to be fully elucidated - in part due to a lack of knowledge of relationships between intersex gonad physiology and fish health. Understanding the physiological status of intersex fish is critical to assess ecological risk, understand mechanisms of induction, and to establish biomarkers of intersex in fish. In the present study, features of gonad metabolite profiles associated with TO in largemouth bass (LMB, Micropterus salmoides) from an impoundment in Georgia (USA) were determined using GC-MS-based metabolomics. Clinical blood biochemical screens were used to evaluate markers of fish health associated with TO. Results suggest that physiological changes in energy expenditure as well as relatively 'feminized' gonad lipid and protein metabolism may be related to the occurrence of TO in male LMB, and highlight the need to understand relationships between intersex and physical stressors such as elevated temperature and hypoxia. These results provide novel insight to AOPs associated with TO and identify candidate analytes for biomarker discovery.


Assuntos
Bass/sangue , Bass/metabolismo , Metabolômica , Oócitos/metabolismo , Testículo/citologia , Animais , Masculino
17.
Environ Toxicol Chem ; 39(9): 1797-1812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445211

RESUMO

Standard ecological risk assessment practices often rely on larval and juvenile fish toxicity data as representative of the amphibian aquatic phase. Empirical evidence suggests that endpoints measured in fish early life stage tests are often sufficient to protect larval amphibians. However, the process of amphibian metamorphosis relies on endocrine cues that affect development and morphological restructuring and are not represented by these test endpoints. The present study compares developmental endpoints for zebrafish (Danio rerio) and the African clawed frog (Xenopus laevis), 2 standard test species, exposed to the herbicide trifluralin throughout the larval period. Danio rerio were more sensitive and demonstrated a reduction in growth measurements with increasing trifluralin exposure. Size of X. laevis at metamorphosis was not correlated with exposure concentration; however, time to metamorphosis was delayed relative to trifluralin concentration. Gene expression patterns indicate discrepancies in response by D. rerio and X. laevis, and dose-dependent metabolic activity suggests that trifluralin exposure perturbed biological pathways differently within the 2 species. Although many metabolites were correlated with exposure concentration in D. rerio, nontargeted hepatic metabolomics identified a subset of metabolites that exhibited a nonmonotonic response to trifluralin exposure in X. laevis. Linking taxonomic distinctions in cellular-level response with ecologically relevant endpoints will refine assumptions used in interspecies extrapolation of standard test effects and improve assessment of sublethal impacts on amphibian populations. Environ Toxicol Chem 2020;39:1797-1812. Published 2020. This article is a US government work and is in the public domain in the USA.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Filogenia , Trifluralina/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Determinação de Ponto Final , Regulação da Expressão Gênica/efeitos dos fármacos , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Metabolômica , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/sangue , Xenopus laevis/genética , Xenopus laevis/metabolismo , Peixe-Zebra/genética
18.
Environ Toxicol Chem ; 39(2): 419-436, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31661721

RESUMO

The eastern oyster (Crassostrea virginica) supports a large aquaculture industry and is a keystone species along the Atlantic seaboard. Native oysters are routinely exposed to a complex mixture of contaminants that increasingly includes pharmaceuticals and personal care products (PPCPs). Unfortunately, the biological effects of chemical mixtures on oysters are poorly understood. Untargeted gas chromatography-mass spectrometry metabolomics was utilized to quantify the response of oysters exposed to fluoxetine, N,N-diethyl-meta-toluamide, 17α-ethynylestradiol, diphenhydramine, and their mixture. Oysters were exposed to 1 µg/L of each chemical or mixture for 10 d, followed by an 8-d depuration period. Adductor muscle (n = 14/treatment) was sampled at days 0, 1, 5, 10, and 18. Trajectory analysis illustrated that metabolic effects and class separation of the treatments varied at each time point and that, overall, the oysters were only able to partially recover from these exposures post-depuration. Altered metabolites were associated with cellular energetics (i.e., Krebs cycle intermediates), as well as amino acid metabolism and fatty acids. Exposure to these PPCPs also affected metabolic pathways associated with anaerobic metabolism, osmotic stress, and oxidative stress, in addition to the physiological effects of each chemical's postulated mechanism of action. Following depuration, fewer metabolites were altered, but none of the treatments returned them to their initial control values, indicating that metabolic disruptions were long-lasting. Interestingly, the mixture did not directly cluster with individual treatments in the scores plot from partial least squares discriminant analysis, and many of its affected metabolic pathways were not well predicted from the individual treatments. The present study highlights the utility of untargeted metabolomics in developing exposure biomarkers for compounds with different modes of action in bivalves. Environ Toxicol Chem 2020;39:419-436. © 2019 SETAC.


Assuntos
Cosméticos/toxicidade , Crassostrea/efeitos dos fármacos , DEET/toxicidade , Fluoxetina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Carga Corporal (Radioterapia) , Cosméticos/análise , Cosméticos/farmacocinética , Crassostrea/metabolismo , DEET/farmacocinética , Fluoxetina/análise , Fluoxetina/farmacocinética , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Alimentos Marinhos , Poluentes Químicos da Água/farmacocinética
19.
Environ Sci Nano ; 6(1): 180-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297195

RESUMO

The production of graphene-family nanomaterials (GFNs) has increased appreciably in recent years. Graphene oxide (GO) has been found to be the most toxic nanomaterial among GFNs and, to our knowledge, no studies have been conducted to model its fate and transport in the environment. Lab studies show that GO undergoes phototransformation in surface waters under sunlight radiation resulting in formation of photoreduced GO (rGO). In this study, the recently updated Water Quality Analysis Simulation Program (WASP8) is used to simulate time-dependent environmental exposure concentrations of GO and its major phototransformation product, rGO, for Brier Creek, GA, USA at two flow scenarios under a constant loading of GO to the river for a period of 20 years. Analysis shows that the degree of phototransformation is closely associated with river flow condition: up to of 40% of GO undergoes phototransformation at low flow condition, whereas only 2.5% of GO phototransformation occurs at mean flow condition. River flow and heteroaggregation exhibit a 'competing' effect in determining the formation of rGO heteroagglomerates. Mass fraction analysis indicates that the vast majority of rGO heteroagglomerates settle to the sediment layers due to the settling of suspended solids. Simulation of natural recovery after removal of the GO source suggests that free GO and rGO are the immediate contaminants of concern in the studied surface water system, while rGO heteroaggregated with suspended solids can have a long-term ecological impact on both the water column and sediments.

20.
Environ Toxicol Chem ; 38(5): 1052-1061, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698848

RESUMO

Tank mixtures are popular within the agricultural community because they are time- and cost-effective, but field applications leave nontarget organisms at risk of exposure. We explored the effects of a common herbicide (atrazine and alachlor) and fertilizer (urea) tank mixture on juvenile frog corticosterone stress levels, acetylcholinesterase (AChE) activity, and pesticide bioaccumulation. Single agrochemical or tank mixtures were applied to terrestrial microcosms, and then individual Southern leopard frog (Lithobates sphenocephala) juveniles were added to microcosms for an 8-h exposure. Afterward, frogs were transferred to aquatic microcosms for 1 h to monitor corticosterone prior to euthanasia, brain tissues were excised to evaluate AChE, and tissue homogenates were analyzed for pesticide bioconcentation with gas chromatography-mass spectrometry. Atrazine significantly increased corticosterone in frogs, particularly when combined with alachlor and urea. Atrazine increased AChE and urea decreased AChE, although no interactive effects of chemical combinations were discernible. Relative to their individual treatments, the complete tank mixture with all 3 agrochemicals resulted in 64% greater bioconcentration of atrazine and 54% greater bioconcentration of alachlor in frog tissues. Our results suggest that agrochemical mixtures as well as their active ingredients can lead to altered stress levels and impaired physiological responses in amphibians. An improved understanding of the effects of co-exposure to environmental contaminants in amphibians is important in assessing the ecological risks these compounds pose. Environ Toxicol Chem 2019;9999:1-10. © 2019 SETAC.


Assuntos
Acetilcolinesterase/metabolismo , Ecossistema , Fertilizantes/toxicidade , Praguicidas/toxicidade , Ranidae/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Agricultura , Animais , Bioacumulação , Encéfalo/efeitos dos fármacos , Corticosterona/sangue , Ranidae/sangue , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...