Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 9(5): e01271, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912272

RESUMO

BACKGROUND AND PURPOSE: Brain perfusion measurement in the subacute phase of stroke may support therapeutic decisions. We evaluated whether arterial spin labeling (ASL), a noninvasive perfusion imaging technique based on magnetic resonance imaging (MRI), adds diagnostic and prognostic benefit to diffusion-weighted imaging (DWI) in subacute stroke. METHODS: In a single-center imaging study, patients with DWI lesion(s) in the middle cerebral artery (MCA) territory were included. Onset to imaging time was ≤7 days and imaging included ASL and DWI sequences. Qualitative (standardized visual analysis) and quantitative perfusion analyses (region of interest analysis) were performed. Dichotomized early outcome (modified Rankin Scale [mRS] 0-2 vs. 3-6) was analyzed in two logistic regression models. Model 1 included DWI lesion volume, age, vascular pathology, admission NIHSS, and acute stroke treatment as covariates. Model 2 added the ASL-based perfusion pattern to Model 1. Receiver-operating-characteristic (ROC) and area-under-the-curve (AUC) were calculated for both models to assess their predictive power. The likelihood-ratio-test compared both models. RESULTS: Thirty-eight patients were included (median age 70 years, admission NIHSS 4, onset to imaging time 67 hr, discharge mRS 2). Qualitative perfusion analysis yielded additional diagnostic information in 84% of the patients. In the quantitative analysis, AUC for outcome prediction was 0.88 (95% CI 0.77-0.99) for Model 1 and 0.97 (95% CI 0.91-1.00) for Model 2. Inclusion of perfusion data significantly improved performance and outcome prediction (p = 0.002) of stroke imaging. CONCLUSIONS: In patients with subacute stroke, our study showed that adding perfusion imaging to structural imaging and clinical data significantly improved outcome prediction. This highlights the usefulness of ASL and noninvasive perfusion biomarkers in stroke diagnosis and management.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imagem de Perfusão/métodos , Marcadores de Spin , Acidente Vascular Cerebral , Idoso , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Gravidade do Paciente , Valor Preditivo dos Testes , Prognóstico , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia
2.
J Neuroimaging ; 26(4): 436-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26902457

RESUMO

BACKGROUND AND PURPOSE: Arterial spin labeling (ASL) is an MRI technique to measure cerebral blood flow (CBF) without the need of exogenous contrast agents and is thus a promising alternative to the clinical standard dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion imaging. Latest international guidelines encourage its application in the clinical setting. However, susceptibility-induced image distortions impair ASL with fast readout modules (eg Echo Planar Imaging, EPI; gradient and spin echo, GRASE). In the present study, we investigated the benefit of a distortion correction for ASL compared to DSC. METHODS: A pulsed ASL (PASL) sequence combined with a 3D-GRASE readout at multiple inflow times (multi-TI) was used and was corrected for susceptibility distortions using a FMRIB Software Library (FSL) implemented tool TOPUP. We performed qualitative (three expert raters) and quantitative (volume of interest [VOI]-based) comparisons of ASL and DSC imaging in 13 patients with chronic steno-occlusive disease. RESULTS: In the qualitative analysis, distortion correction of the images led to a strong increase in diagnostic precision of ASL compared to DSC in the anterior cerebral artery (ACA) perfusion territory, where the susceptibility artifact was most pronounced (specificity 8% vs. 75%). In the quantitative analysis, the correlation between ASL and DSC values increased for all perfusion territories with the best improvement for the ACA territory (for anterior, middle and posterior cerebral artery: ACA: rho -0.22 vs. 0.71; MCA: rho 0.58 vs. 0.76; PCA: rho 0.58 vs. 0.63). CONCLUSIONS: We showed that susceptibility distortion correction strongly improves the comparability of multi-TI ASL 3D-GRASE to DSC in steno-occlusive disease. We suggest it to be implemented in ASL postprocessing routines.


Assuntos
Artefatos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/fisiopatologia , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Interpretação de Imagem Assistida por Computador/métodos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Marcadores de Spin , Adulto , Idoso , Idoso de 80 Anos ou mais , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ultrassonografia Doppler Transcraniana
3.
J Cereb Blood Flow Metab ; 35(3): 392-401, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25407272

RESUMO

Pulsed arterial spin labeling (PASL) at multiple inflow times (multi-TIs) is advantageous for the measurement of brain perfusion in patients with long arterial transit times (ATTs) as in steno-occlusive disease, because bolus-arrival-time can be measured and blood flow measurements can be corrected accordingly. Owing to its increased signal-to-noise ratio, a combination with a three-dimensional gradient and spin echo (GRASE) readout allows acquiring a sufficient number of multi-TIs within a clinically feasible acquisition time of 5 minutes. We compared this technique with the clinical standard dynamic susceptibility-weighted contrast-enhanced imaging-magnetic resonance imaging in patients with unilateral stenosis >70% of the internal carotid or middle cerebral artery (MCA) at 3 Tesla. We performed qualitative (assessment by three expert raters) and quantitative (region of interest (ROI)/volume of interest (VOI) based) comparisons. In 43 patients, multi-TI PASL-GRASE showed perfusion alterations with moderate accuracy in the qualitative analysis. Quantitatively, moderate correlation coefficients were found for the MCA territory (ROI based: r=0.52, VOI based: r=0.48). In the anterior cerebral artery (ACA) territory, a readout related right-sided susceptibility artifact impaired correlation (ROI based: r=0.29, VOI based: r=0.34). Arterial transit delay artifacts were found only in 12% of patients. In conclusion, multi-TI PASL-GRASE can correct for arterial transit delay in patients with long ATTs. These results are promising for the transfer of ASL to the clinical practice.


Assuntos
Estenose das Carótidas/patologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Artéria Cerebral Média/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Transtornos Cerebrovasculares/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...