Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067417

RESUMO

Dried urine spot (DUS) is a micro-sample collection technique, known for its advantages in handling, storage and shipping. It also uses only a small volume of urine, an essential consideration in working with small animals, or in acute medical situations. Alkyl-phosphonic acids are the direct and indicative metabolites of organophosphorus chemical warfare agents (OP-CWAs) and are present in blood and urine shortly after exposure. They are therefore crucially important for monitoring casualties in war and terror scenarios. We report here a new approach for the determination of the metabolites of five CWAs in urine using DUS. The method is based on a simple and rapid sample preparation, using only 50 µL of urine, spotted and dried on DBS paper, extracted using 300 µL methanol/water and analyzed via targeted LC-MS/MS. The detection limits for the five CWAs, sarin (GB), soman (GD), cyclosarin (GF), VX and RVX in human urine were from 0.5 to 5 ng/mL. Recoveries of (40-80%) were obtained in the range of 10-300 ng/mL, with a linear response (R2 > 0.964, R > 0.982). The method is highly stable, even with DUS samples stored up to 5 months at room temperature before analysis. It was implemented in a sarin in vivo exposure experiment on mice, applied for the time course determination of isopropyl methylphosphonic acid (IMPA, sarin hydrolysis product) in mice urine. IMPA was detectable even with samples drawn 60 h after the mice's (IN) exposure to 1 LD50 sarin. This method was also evaluated in a non-targeted screening for multiple potential CWA analogs (LC-Orbitrap HRMS analysis followed by automatic peak detection and library searches). The method developed here is applicable for rapid CWA casualty monitoring.


Assuntos
Substâncias para a Guerra Química , Camundongos , Humanos , Animais , Substâncias para a Guerra Química/análise , Sarina/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Compostos Organofosforados/análise
2.
Environ Sci Technol ; 57(48): 20228-20237, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37935215

RESUMO

Treated wastewater is an important source of water for irrigation. As a result, irrigated crops are chronically exposed to wastewater-derived pharmaceuticals, such as the anticonvulsant drug lamotrigine. Lamotrigine is known to be taken up by plants, but its plant-derived metabolites and their distribution in different plant organs are unknown. This study aimed to detect and identify metabolites of lamotrigine in cucumber plants grown for 35 days in a hydroponic solution by using LC-MS/MS (Orbitrap) analysis. Our data showed that 96% of the lamotrigine taken up was metabolized. Sixteen metabolites possessing a lamotrigine core structure were detected. Reference standards confirmed two; five were tentatively identified, and nine molecular formulas were assigned. The data suggest that lamotrigine is metabolized via N-carbamylation, N-glucosidation, N-alkylation, N-formylation, N-oxidation, and amidine hydrolysis. The metabolites LTG-N2-oxide, M284, M312, and M370 were most likely produced in the roots and were translocated to the leaves. Metabolites M272, M312, M314, M354, M368, M370, and M418 were dominant in leaves. Only a few metabolites were detected in the fruits. With an increasing exposure time, lamotrigine leaf concentrations decreased because of continuous metabolism. Our data showed that the metabolism of lamotrigine in a plant is fast and that a majority of metabolites are concentrated in the roots and leaves.


Assuntos
Anticonvulsivantes , Cucumis sativus , Anticonvulsivantes/análise , Anticonvulsivantes/metabolismo , Lamotrigina/análise , Lamotrigina/metabolismo , Cucumis sativus/metabolismo , Águas Residuárias , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630342

RESUMO

The chemical derivatization to enhance the signal intensity and signal-to-noise (S/N) of several organophosphorus (OP) acids in liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) is illustrated. The OP class of compounds represents the environmental degradants of OP nerve agents and pesticides. N-(2-(bromomethyl)benzyl)-N,N-diethylethanaminium bromide (CAX-B) was utilized to derivatize a panel of eight acids consisting of five alkyl methylphosphonic acids (ethyl-, isopropyl-, isobutyl-, cyclohexyl-, and pinacolyl-methylphosphonic acid) along with three dialkylphosphate analogs (diethyl-, dibutyl-, and diethyl thio-phosphate). The derivatization reaction with CAX-B was conducted in acetonitrile in the presence of potassium carbonate at 70 °C for 1 h. The resulting acid derivatives were analyzed with an LC-Orbitrap-ESI-MS/MS, and their dissociation processes were investigated. It was found that the derivatization procedure increased the limits of identification (LOIs) by one to over two orders of magnitude from the range of 1 to 10 ng/mL for the intact OP-acids to the range of 0.02-0.2 ng/mL for the derivatized acids utilizing an LC-MS(QqQ) in MRM mode, regardless of the sample matrix (hair, concrete, or plant extracts). The interpretation of the corresponding ESI-MS/MS spectra for each type of derivatized sub-OP family revealed the formation of characteristic neutral losses and a characteristic ion for the organophosphorus core. This derivatization is beneficial and useful for screening and identifying target and "unknown" OP acids.


Assuntos
Brometos , Espectrometria de Massas em Tandem , Cátions , Cromatografia Líquida
4.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175383

RESUMO

The development of healthier and more sustainable food products, such as plant-based meat substitutes (PBMSs), have received significant interest in recent years. A thorough understanding of the aroma composition can support efforts to improve the sensory properties of PBMS products and promote their consumer acceptability. Here, we developed an integrated hardware and software approach for aroma analysis of roasted food based on simultaneous analysis with three complementary detectors. Following the standard procedure of aroma headspace sampling and separation using solid-phase microextraction-gas chromatography, the column flow was split into three channels for the following detectors for the selective detection of nitrogen and sulfur (N/S)-containing compounds: an electron ionization-mass spectrometry for identification through a library search, a nitrogen-phosphorous detector, and a flame-photometric detector (FPD)/pulsed-FPD. Integration of results from the different types of detectors was achieved using a software tool, called AromaMS, developed in-house for data processing. As stipulated by the user, AromaMS performed either non-targeted screening for all volatile organic compounds (VOCs) or selective screening for N/S-containing VOCs that play a major role in the aroma experience. User-defined parameters for library matching and the retention index were applied to further eliminate false identifications. This new approach was successfully applied for comparative analysis of roasted meat and PBMS samples.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Compostos de Enxofre/análise , Enxofre , Carne/análise , Compostos de Nitrogênio , Nitrogênio , Microextração em Fase Sólida/métodos , Software
5.
Molecules ; 28(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615269

RESUMO

A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC−mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2−4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Trometamina/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Composição de Medicamentos , COVID-19/prevenção & controle , SARS-CoV-2 , Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...