Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Epilepsy Res ; 170: 106547, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421702

RESUMO

This study aimed at providing valid estimates for the risk of clinically relevant seizure aggravation by recommended anti-seizure medications in patients with Genetic Generalized Epilepsy (GGE). To this aim, treatment response, side effects and paradoxical reactions to anti-seizure treatment were retrospectively assessed in a near-population based cohort comprising 471 adult GGE patients. A total of 1046 treatment attempts were analyzed (lamotrigine: 351, valproic acid: 295, levetiracetam: 249, primidone/phenobarbital: 94, zonisamide: 57). Under lamotrigine, seizure aggravation was observed in 15 patients (two patients during levetiracetam, one patient during zonisamide, none during phenobarbital and valproic acid). All but two patients with paradoxical reactions to lamotrigine were diagnosed with juvenile myoclonic epilepsy (JME), otherwise, the clinical and electroencephalographic characteristics of patients with paradoxical reactions did not differ. At treatment start, the estimated risk of a paradoxical reaction to lamotrigine was 7.9 % in JME patients (n = 190). For all GGE patients (incl. JME), the estimated risk of clinically relevant seizure aggravation under treatment with lamotrigine was 3.7 % (1.8 % for zonisamide and 0.8 % for levetiracetam). In conclusion, clinical significant aggravation of seizure frequency is common in lamotrigine-treated JME patients but rare in patients with other GGE subsyndromes or under treatment with other recommended anti-seizure medication.


Assuntos
Epilepsia Generalizada , Epilepsia Mioclônica Juvenil , Adulto , Anticonvulsivantes/efeitos adversos , Epilepsia Generalizada/tratamento farmacológico , Humanos , Lamotrigina/efeitos adversos , Levetiracetam/uso terapêutico , Epilepsia Mioclônica Juvenil/tratamento farmacológico , Fenobarbital/uso terapêutico , Estudos Retrospectivos , Fatores de Risco , Convulsões/tratamento farmacológico , Ácido Valproico/efeitos adversos , Zonisamida/uso terapêutico
2.
Neurology ; 95(18): e2519-e2528, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32817177

RESUMO

OBJECTIVE: To determine the pattern of treatment response in patients with idiopathic generalized epilepsy (IGE) and whether routinely assessed clinical and neurophysiological parameters allow predicting response to lamotrigine, levetiracetam, or valproic acid. METHODS: In 328 adult patients with IGE, demographic data, imaging, EEG data, current and prior antiepileptic treatment, treatment outcome, and side effects were analyzed from the patients' medical files and patient interviews. RESULTS: Seizure freedom with acceptable side effects at the first attempt was achieved in 61 (18.6%) patients. One hundred four (31.7%) patients tried ≥3 antiepileptic drugs before achieving seizure control at the last follow-up. Lamotrigine, levetiracetam, and valproic acid showed differential response rates (39.8% vs 47.5% vs 71.1%) that were most pronounced in patients with juvenile myoclonic epilepsy. The risk of having side effects was higher with valproic acid (23.7%) than with lamotrigine (10.4%) or levetiracetam (20.4%) treatment, contributing to the low retention rate of valproic acid (53.7%). Treatment resistance was associated with established risk factors. Multivariate analyses aiming at identifying clinical indicators for response to specific drugs did not reveal putative biomarkers when corrected for drug resistance. CONCLUSION: Despite a high rate of seizure control, the chance of achieving seizure control and acceptable side effects at first attempt was low due to an inverse association of effectiveness and side effects of the 3 most commonly used drugs. Routinely assessed clinical parameters were not indicative for response to specific drugs. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with IGE, various clinical factors do not predict a response to specific antiepileptic drugs.


Assuntos
Biomarcadores , Epilepsia Generalizada/tratamento farmacológico , Lamotrigina/uso terapêutico , Levetiracetam/uso terapêutico , Ácido Valproico/uso terapêutico , Adolescente , Adulto , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Resistência a Medicamentos , Humanos , Lamotrigina/efeitos adversos , Levetiracetam/efeitos adversos , Resultado do Tratamento , Ácido Valproico/efeitos adversos , Adulto Jovem
3.
Front Pediatr ; 8: 416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850532

RESUMO

Objectives: There is an increasing interest in cannabinoid-based products for the treatment of refractory pediatric epilepsy. However, a licensed cannabidiol (CBD) product was first approved for use by the European regulatory authorities in 2019. We aimed to obtain knowledge about clinical experience and attitudes toward cannabinoid use for epilepsy treatment among neuropediatricians in Scandinavia and Germany in the era before a CBD-product was commercially licensed and available. Study design: An internet-based questionnaire (Survey Monkey) was distributed by email to members of neuropediatric societies in Sweden, Germany, Denmark, and Norway between February and April 2018. One reminder email was sent. Results: Eighty-six responded. Only 10 of 86 (12%) respondents had personal experience with off-label prescription of cannabinoid-based products, mainly for severe refractory pediatric epilepsies like Dravet syndrome and Lennox-Gastaut syndrome. However, 49 respondents (57%) had been exposed to relatives of patients that had requested or wanted to discuss cannabinoid therapy, and 32 (37%) respondents knew about cannabinoid self-medication. The knowledge regarding cannabinoid-based therapy among the respondents was overall limited. Main reasons for not prescribing cannabinoid-based therapy were concerns about law regulations and lack of an available product. Conclusion: Off-label cannabinoid-based therapy for pediatric epilepsy was not widely prescribed by neuropediatricians in Scandinavia and Germany in 2018.

4.
Epilepsy Res ; 165: 106374, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32554302

RESUMO

OBJECTIVE: Although the genetic origin of Idiopathic/Genetic Generalized Epilepsy (IGE) is hardly disputed, only a minority of patients show Mendelian inheritance. We here questioned if clinical characteristics like long-term outcome and treatment response differ between patients with sporadic and familial IGE. METHODS: In a near-population based cohort of IGE patients, clinical characteristics, treatment response and family history of 443 IGE patients were analyzed. In patients reporting at least one close relative (max. 3rd grade) with suspected IGE, we designed pedigrees and estimated possible inheritance. RESULTS: We found 121 patients (27.3%) with a positive family history of IGE, 322 (72.7%) patients had sporadic IGE. Pedigrees suggesting possible autosomal-dominant pattern of inheritance were found in 52 (11.7%) patients. Clinical characteristics, seizure frequency, surrogate markers for social outcome, psychiatric and somatic comorbidity, seizure type, EEG features, treatment response to lamotrigine, levetiracetam or valproic acid and risk of treatment resistance were similar in all groups. CONCLUSION: Familial and sporadic IGE patients do not differ in terms of clinical phenotype and treatment response.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia Generalizada/tratamento farmacológico , Levetiracetam/uso terapêutico , Adolescente , Adulto , Epilepsia Generalizada/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Lamotrigina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Linhagem , Ácido Valproico/uso terapêutico
5.
J Med Genet ; 56(10): 701-710, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451536

RESUMO

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Epilepsia/genética , Cardiopatias/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Cardiopatias/congênito , Humanos , Mutação com Perda de Função , Masculino , Deleção de Sequência
6.
Epileptic Disord ; 21(S1): 41-47, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149903

RESUMO

Formerly idiopathic, focal epilepsies (IFE) are self-limiting, "age-related" diseases that mainly occur during critical developmental periods. Childhood epilepsy with centrotemporal spikes, or Rolandic epilepsy (RE), is the most frequent form of IFE. Together with the Landau-Kleffner syndrome and the epileptic Encephalopathy related to Status Epilepticus during slow Sleep syndrome (ESES), RE is part of a single and continuous spectrum of childhood epilepsies and epileptic encephalopathies with acquired cognitive, behavioral and speech and/or language impairment, known as the epilepsy-aphasia spectrum (EAS). The pathophysiology has long been attributed to an elusive and complex interplay between brain development and maturation processes on the one hand, and susceptibility genes on the other hand. Studies based on the variable combination of molecular cytogenetics, Sanger and next-generation sequencing tools, and functional assays have led to the identification and validation of genetic mutations in the GRIN2A gene that can directly cause various types of EAS disorders. The recent identification of GRIN2A defects in EAS represents a first and major break-through in our understanding of the underlying pathophysiological mechanisms. In this review, we describe the current knowledge on the genetic architecture of IFE.


Assuntos
Afasia/genética , Epilepsia Rolândica/genética , Síndrome de Landau-Kleffner/genética , Mutação/genética , Receptores de N-Metil-D-Aspartato/genética , Criança , Eletroencefalografia/métodos , Humanos , Síndrome de Landau-Kleffner/diagnóstico , Linhagem
7.
Genet Med ; 21(10): 2216-2223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30976099

RESUMO

PURPOSE: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies. METHODS: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT. RESULTS: All patients had hypotonia, severe developmental delay, and epilepsy. Epilepsy onset ranged from first day of life to two years of age. Severity of the seizure disorder varied from treatable seizures to severe neonatal onset epileptic encephalopathies. The facial gestalt of patients resembled that of previously published PIGT patients as they were closest to the center of the PIGT cluster in the clinical face phenotype space and were distinguishable from other gene-specific phenotypes. CONCLUSION: We expand our knowledge of PIGT. Our cases reaffirm that the use of genetic testing is essential for diagnosis in this group of disorders. Finally, we show that computer-assisted facial gestalt analysis accurately assigned PIGT cases to the multiple congenital anomalies-hypotonia-seizures syndrome phenotypic series advocating the additional use of next-generation phenotyping technology.


Assuntos
Aciltransferases/metabolismo , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Convulsões/metabolismo , Anormalidades Múltiplas/genética , Aciltransferases/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Estudos de Associação Genética , Genótipo , Glicosilfosfatidilinositóis/genética , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Fenótipo , Convulsões/genética
8.
Neurol Genet ; 5(6): e373, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32042906

RESUMO

OBJECTIVE: The study is aimed at widening the clinical and genetic spectrum and at assessing genotype-phenotype associations in QARS encephalopathy. METHODS: Through diagnostic gene panel screening in an epilepsy cohort, and recruiting through GeneMatcher and our international network, we collected 10 patients with biallelic QARS variants. In addition, we collected data on 12 patients described in the literature to further delineate the associated phenotype in a total cohort of 22 patients. Computer modeling was used to assess changes on protein folding. RESULTS: Biallelic pathogenic variants in QARS cause a triad of progressive microcephaly, moderate to severe developmental delay, and early-onset epilepsy. Microcephaly was present at birth in 65%, and in all patients at follow-up. Moderate (14%) or severe (73%) developmental delay was characteristic, with no achievement of sitting (85%), walking (86%), or talking (90%). Additional features included irritability (91%), hypertonia/spasticity (75%), hypotonia (83%), stereotypic movements (75%), and short stature (56%). Seventy-nine percent had pharmacoresistant epilepsy with mainly neonatal onset. Characteristic cranial MRI findings include early-onset progressive atrophy of cerebral cortex (89%) and cerebellum (61%), enlargement of ventricles (95%), and age-dependent delayed myelination (88%). A small subset of patients displayed a less severe phenotype. CONCLUSIONS: These data revealed first genotype-phenotype associations and may serve for improved interpretation of new QARS variants and well-founded genetic counseling.

9.
Lancet Neurol ; 17(8): 699-708, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30033060

RESUMO

BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund).


Assuntos
Epilepsia Generalizada/genética , Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/genética , Variação Genética/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia Generalizada/etnologia , Europa (Continente) , Saúde da Família , Feminino , Humanos , Lactente , Recém-Nascido , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Adulto Jovem
12.
Ugeskr Laeger ; 179(14)2017 Apr 03.
Artigo em Dinamarquês | MEDLINE | ID: mdl-28416069

RESUMO

Ketogenic diet (KD) is used worldwide in the treatment of medically refractory epilepsy. Since the introduction of KD in the early 1900s, new approaches such as medium-chain triglyceride ketogenic diet, modified Atkins diet and low glycaemic index treatment have been suggested as alternative treatments. Several studies have documented significant seizure reduction from all four diets. The aim of this article is to give an overview of the effect of dietary treatment and to discuss advantages in initiating dietary treatment as an early treatment instead of as a last option.


Assuntos
Dieta com Restrição de Carboidratos , Dieta Cetogênica , Epilepsia Resistente a Medicamentos/dietoterapia , Adolescente , Criança , Índice Glicêmico , Humanos
13.
Mol Syndromol ; 7(4): 210-219, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27781031

RESUMO

In recent years, several genes have been causally associated with epilepsy. However, making a genetic diagnosis in a patient can still be difficult, since extensive phenotypic and genetic heterogeneity has been observed in many monogenic epilepsies. This study aimed to analyze the genetic basis of a wide spectrum of epilepsies with age of onset spanning from the neonatal period to adulthood. A gene panel targeting 46 epilepsy genes was used on a cohort of 216 patients consecutively referred for panel testing. The patients had a range of different epilepsies from benign neonatal seizures to epileptic encephalopathies (EEs). Potentially causative variants were evaluated by literature and database searches, submitted to bioinformatic prediction algorithms, and validated by Sanger sequencing. If possible, parents were included for segregation analysis. We identified a presumed disease-causing variant in 49 (23%) of the 216 patients. The variants were found in 19 different genes including SCN1A, STXBP1, CDKL5, SCN2A, SCN8A, GABRA1, KCNA2, and STX1B. Patients with neonatal-onset epilepsies had the highest rate of positive findings (57%). The overall yield for patients with EEs was 32%, compared to 17% among patients with generalized epilepsies and 16% in patients with focal or multifocal epilepsies. By the use of a gene panel consisting of 46 epilepsy genes, we were able to find a disease-causing genetic variation in 23% of the analyzed patients. The highest yield was found among patients with neonatal-onset epilepsies and EEs.

14.
Neurology ; 87(11): 1140-51, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27521439

RESUMO

OBJECTIVE: To delineate phenotypic heterogeneity, we describe the clinical features of a cohort of patients with GABRA1 gene mutations. METHODS: Patients with GABRA1 mutations were ascertained through an international collaboration. Clinical, EEG, and genetic data were collected. Functional analysis of 4 selected mutations was performed using the Xenopus laevis oocyte expression system. RESULTS: The study included 16 novel probands and 3 additional family members with a disease-causing mutation in the GABRA1 gene. The phenotypic spectrum varied from unspecified epilepsy (1), juvenile myoclonic epilepsy (2), photosensitive idiopathic generalized epilepsy (1), and generalized epilepsy with febrile seizures plus (1) to severe epileptic encephalopathies (11). In the epileptic encephalopathy group, the patients had seizures beginning between the first day of life and 15 months, with a mean of 7 months. Predominant seizure types in all patients were tonic-clonic in 9 participants (56%) and myoclonic seizures in 5 (31%). EEG showed a generalized photoparoxysmal response in 6 patients (37%). Four selected mutations studied functionally revealed a loss of function, without a clear genotype-phenotype correlation. CONCLUSIONS: GABRA1 mutations make a significant contribution to the genetic etiology of both benign and severe epilepsy syndromes. Myoclonic and tonic-clonic seizures with pathologic response to photic stimulation are common and shared features in both mild and severe phenotypes.


Assuntos
Epilepsia/genética , Mutação , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Oócitos , Fenótipo , Receptores de GABA-A/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo
15.
Mol Genet Genomic Med ; 4(4): 457-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27465585

RESUMO

BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. METHODS: We sent out a survey to 16 genetic centers performing SCN1A testing. RESULTS: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. CONCLUSION: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

16.
Neurology ; 86(23): 2171-8, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164704

RESUMO

OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. RESULTS: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. CONCLUSIONS: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.


Assuntos
Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Estudos de Coortes , Consanguinidade , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Oócitos , Fenótipo , Convulsões/genética , Convulsões/metabolismo , Xenopus laevis
18.
Epilepsia ; 57 Suppl 1: 26-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26749014

RESUMO

Sudden unexpected death in epilepsy (SUDEP) risk reduction remains a critical aim in epilepsy care. To date, only aggressive medical and surgical efforts to control seizures have been demonstrated to be of benefit. Incomplete understanding of SUDEP mechanisms limits the development of more specific interventions. Periictal cardiorespiratory dysfunction is implicated in SUDEP; postictal electroencephalography (EEG) suppression, coma, and immobility may also play a role. Nocturnal supervision is protective against SUDEP, presumably by permitting intervention in the case of a life-threatening event. Resuscitative efforts were implemented promptly in near-SUDEP cases but delayed in SUDEP deaths in the Mortality in Epilepsy Monitoring Unit Study (MORTEMUS) study. Nursing interventions--including repositioning, oral suctioning, and oxygen administration--reduce seizure duration, respiratory dysfunction, and EEG suppression in the epilepsy monitoring unit (EMU), but have not been studied in outpatients. Cardiac pacemakers or cardioverter-defibrillator devices may be of benefit in a few select individuals. A role for implantable neurostimulators has not yet been established. Seizure detection devices, including those that monitor generalized tonic-clonic seizure-associated movements or cardiorespiratory parameters, may provide a means to permit timely periictal intervention. However, these and other devices, such as antisuffocation pillows, have not been adequately investigated with respect to SUDEP prevention.


Assuntos
Asfixia/prevenção & controle , Estimulação Cardíaca Artificial , Reanimação Cardiopulmonar , Morte Súbita/prevenção & controle , Epilepsia/terapia , Monitorização Fisiológica , Oxigenoterapia , Posicionamento do Paciente , Estimulação Encefálica Profunda , Desfibriladores Implantáveis , Eletroencefalografia , Humanos , Neuroestimuladores Implantáveis , Marca-Passo Artificial , Ressuscitação , Sucção
19.
Seizure ; 35: 106-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26820223

RESUMO

PURPOSE: PCDH19 mutations cause epilepsy and mental retardation limited to females (EFMR) or Dravet-like syndromes. Especially in the first years of life, epilepsy is known to be highly pharmacoresistant. The aim of our study was to evaluate the effectiveness of antiepileptic therapy in patients with PCDH19 mutations. METHODS: We report a retrospective multicenter study of antiepileptic therapy in 58 female patients with PCDH19 mutations and epilepsy aged 2-27 years (mean age 10.6 years). RESULTS: The most effective drugs after 3 months were clobazam and bromide, with a responder rate of 68% and 67%, respectively, where response was defined as seizure reduction of at least 50%. Defining long-term response as the proportion of responders after 12 months of treatment with a given drug in relation to the number of patients treated for at least 3 months, the most effective drugs after 12 months were again bromide and clobazam, with a long-term response of 50% and 43%, respectively. Seventy-four percent of the patients became seizure-free for at least 3 months, 47% for at least one year. SIGNIFICANCE: The most effective drugs in patients with PCDH19 mutations were bromide and clobazam. Although epilepsy in PCDH19 mutations is often pharmacoresistant, three quarters of the patients became seizure-free for at least for 3 months and half of them for at least one year. However, assessing the effectiveness of the drugs is difficult because a possible age-dependent spontaneous seizure remission must be considered.


Assuntos
Anticonvulsivantes/uso terapêutico , Caderinas/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Mutação/genética , Farmacogenética , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Protocaderinas , Cruz Vermelha , Estudos Retrospectivos , Inquéritos e Questionários , Resultado do Tratamento , Adulto Jovem
20.
Ann Neurol ; 79(3): 428-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26677014

RESUMO

OBJECTIVE: Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS: We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS: In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION: Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.


Assuntos
Coreia/genética , Epilepsia Neonatal Benigna/genética , Predisposição Genética para Doença/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Polimorfismo de Nucleotídeo Único/genética , Criança , Pré-Escolar , Coreia/diagnóstico , Epilepsia Neonatal Benigna/diagnóstico , Feminino , Humanos , Masculino , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...