Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(4): 447-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348546

RESUMO

Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.


Assuntos
Coiotes , Cervos , Animais , Coelhos , Cervos/fisiologia , Coiotes/fisiologia , Ecossistema , Comportamento Predatório/fisiologia , Equidae
2.
Ecol Appl ; 32(7): e2648, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535971

RESUMO

Understanding factors that influence animal behavior is central to ecology. Basic principles of animal ecology imply that individuals should seek to maximize survival and reproduction, which means carefully weighing risk against reward. Decisions become increasingly complex and constrained, however, when risk is spatiotemporally variable. We advance a growing body of work in predator-prey behavior by evaluating novel questions where a prey species is confronted with multiple predators and a potential competitor. We tested how fine-scale behavior of female mule deer (Odocoileus hemionus) during the reproductive season shifted depending upon spatial and temporal variation in risk from predators and a potential competitor. We expected female deer to avoid areas of high risk when movement activity of predators and a competitor were high. We used GPS data collected from 76 adult female mule deer, 35 adult female elk, 33 adult coyotes, and six adult mountain lions. Counter to our expectations, female deer exhibited selection for multiple risk factors, however, selection for risk was dampened by the exposure to risk within home ranges of female deer, producing a functional response in habitat selection. Furthermore, temporal variation in movement activity of predators and elk across the diel cycle did not result in a shift in movement activity by female deer. Instead, the average level of risk within their home range was the predominant factor modulating the response to risk by female deer. Our results counter prevailing hypotheses of how large herbivores navigate risky landscapes and emphasize the importance of accounting for the local environment when identifying effects of risk on animal behavior. Moreover, our findings highlight additional behavioral mechanisms used by large herbivores to mitigate multiple sources of predation and potential competitive interactions.


Assuntos
Coiotes , Cervos , Animais , Cervos/fisiologia , Ecossistema , Equidae , Feminino , Herbivoria , Comportamento Predatório
3.
Ecol Evol ; 12(2): e8641, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35228863

RESUMO

Successfully perceiving risk and reward is fundamental to the fitness of an animal, and can be achieved through a variety of perception tactics. For example, mesopredators may "directly" perceive risk by visually observing apex predators, or may "indirectly" perceive risk by observing habitats used by predators. Direct assessments should more accurately characterize the arrangement of risk and reward; however, indirect assessments are used more frequently in studies concerning the response of GPS-marked animals to spatiotemporally variable sources of risk and reward. We investigated the response of a mesopredator to the presence of risk and reward created by an apex predator, where risk and reward likely vary in relative perceptibility (i.e., degree of being perceptible). First, we tested whether coyotes (Canis latrans) use direct or indirect assessments to navigate the presence of mountain lions (Puma concolor; risk) and kills made by mountain lions (reward) in an area where coyotes were a common prey item for mountain lions. Second, we assessed the behavioral response of coyotes to direct encounters with mountain lions. Third, we evaluated spatiotemporal use of carrion by coyotes at kills made by mountain lions. Indirect assessments generally outperformed direct assessments when integrating analyses into a unified framework; nevertheless, our ability to detect direct perception in navigating to mountain lion kills was likely restricted by scale and sampling limitations (e.g., collar fix rates, unsampled kill sites). Rather than responding to the risk of direct encounters with mountain lions, coyotes facilitated encounters by increasing their movement rate, and engaged in risky behavior by scavenging at mountain lion kills. Coyotes appear to mitigate risk by using indirect perception to avoid mountain lions. Our predator-predator interactions and insights are nuanced and counter to the conventional predator-prey systems that have generated much of the predation risk literature.

4.
Ecol Evol ; 11(17): 11559-11568, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522324

RESUMO

Ecosystem engineers are organisms that influence their environment, which includes alterations leading to habitat provisioning for other species. Perhaps the most well-examined guild of species provisioning habitat for other species is tree cavity excavators or woodpeckers (Picidae). Many studies have examined the suite of secondary cavity users that rely on woodpeckers, and how the ecological network of secondary users, collectively referred to as the nest web, changes across communities. Despite similar habitat provisioning processes, fewer studies have assessed the suite of species associated with burrowers providing access to subterranean habitat. Here, we begin to characterize the burrow web provisioned by American badgers (Taxidea taxus) and evaluate the diversity and frequency of species interactions we detected at abandoned badger burrows in Wyoming, USA. We deployed camera traps at 23 badger burrows and identified interactions with the burrow by birds, mammals, and reptiles. Overall, we discovered 31 other species utilizing badger burrows, consisting of 12 mammals, 18 birds, and 1 reptile. Mammals, other than American badgers themselves and other fossorial species such as ground squirrels (Urocitellus sp.), frequently using burrows included mice (Peromyscus sp.), long-tailed weasel (Mustela frenata), pygmy rabbit (Brachylagus idahoensis), and desert cottontail (Sylvilagus audubonii). Of the 18 bird species detected, most accounted for <5% of overall detections, besides chipping sparrows (Spizella passerina) at 7.2%-11.5% of detections. The most common category of detection by bird species was foraging, contrary to mammals, which used the burrow frequently and were commonly observed entering and exiting the burrow. This work provides additional context on the ecological role of American badgers within their environment. More broadly, this work scratches the surface of many remaining questions to explore with the aim of advancing our understandings about burrow webs across the diversity of burrowing species and the communities in which they occur.

5.
Ecol Evol ; 11(4): 1667-1690, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613997

RESUMO

The application of species distribution models (SDMs) to areas outside of where a model was created allows informed decisions across large spatial scales, yet transferability remains a challenge in ecological modeling. We examined how regional variation in animal-environment relationships influenced model transferability for Canada lynx (Lynx canadensis), with an additional conservation aim of modeling lynx habitat across the northwestern United States. Simultaneously, we explored the effect of sample size from GPS data on SDM model performance and transferability. We used data from three geographically distinct Canada lynx populations in Washington (n = 17 individuals), Montana (n = 66), and Wyoming (n = 10) from 1996 to 2015. We assessed regional variation in lynx-environment relationships between these three populations using principal components analysis (PCA). We used ensemble modeling to develop SDMs for each population and all populations combined and assessed model prediction and transferability for each model scenario using withheld data and an extensive independent dataset (n = 650). Finally, we examined GPS data efficiency by testing models created with sample sizes of 5%-100% of the original datasets. PCA results indicated some differences in environmental characteristics between populations; models created from individual populations showed differential transferability based on the populations' similarity in PCA space. Despite population differences, a single model created from all populations performed as well, or better, than each individual population. Model performance was mostly insensitive to GPS sample size, with a plateau in predictive ability reached at ~30% of the total GPS dataset when initial sample size was large. Based on these results, we generated well-validated spatial predictions of Canada lynx distribution across a large portion of the species' southern range, with precipitation and temperature the primary environmental predictors in the model. We also demonstrated substantial redundancy in our large GPS dataset, with predictive performance insensitive to sample sizes above 30% of the original.

6.
Ecol Evol ; 10(24): 13731-13741, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391676

RESUMO

A better understanding of seed movement in plant community dynamics is needed, especially in light of disturbance-driven changes and investments into restoring degraded plant communities. A primary agent of change within the sagebrush-steppe is wildfire and invasion by non-native forbs and grasses, primarily cheatgrass (Bromus tectorum). Our objectives were to quantify seed removal and evaluate ecological factors influencing seed removal within degraded sagebrush-steppe by granivorous Owyhee harvester ants (Pogonomyrmex salinus Olsen). In 2014, we sampled 76 harvester ant nests across 11 plots spanning a gradient of cheatgrass invasion (40%-91% cover) in southwestern Idaho, United States. We presented seeds from four plant species commonly used in postfire restoration at 1.5 and 3.0 m from each nest to quantify seed removal. We evaluated seed selection for presented species, monthly removal, and whether biotic and abiotic factors (e.g., distance to nearest nest, temperature) influenced seed removal. Our top model indicated seed removal was positively correlated with nest height, an indicator of colony size. Distance to seeds and cheatgrass canopy cover reduced seed removal, likely due to increased search and handling time. Harvester ants were selective, removing Indian ricegrass (Achnatherum hymenoides) more than any other species presented. We suspect this was due to ease of seed handling and low weight variability. Nest density influenced monthly seed removal, as we estimated monthly removal of 1,890 seeds for 0.25 ha plots with 1 nest and 29,850 seeds for plots with 15 nests. Applying monthly seed removal to historical restoration treatments across the western United States showed harvester ants can greatly reduce seed availability at degraded sagebrush sites; for instance, fourwing saltbush (Atriplex canescens) seeds could be removed in <2 months. Collectively, these results shed light on seed removal by harvester ants and emphasize their potential influence on postfire restoration within invaded sagebrush communities.

7.
Ecol Appl ; 29(3): e01852, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653797

RESUMO

A fundamental challenge in habitat ecology and management is understanding the mechanisms generating animal distributions. Studies of habitat selection provide a lens into such mechanisms, but are often limited by unrealistic assumptions. For example, most studies assume that habitat selection is constant with respect to the availability of resources, such that habitat use remains proportional to availability. To the contrary, a growing body of work has shown the fallacy of this assumption, indicating that animals modify their behavior depending on the context at broader scales. This has been termed a functional response in habitat selection. Furthermore, a diversity of methods is employed to model functional responses in habitat selection, with little attention to how methodology might affect scientific and conservation conclusions. Here, we first review the conceptual and statistical foundations of methods currently used to model functional responses and clarify the ecological tests evaluated within each approach. We then use a combination of simulated and empirical data sets to evaluate the similarities and differences among approaches. Importantly, we identified multiple statistical issues with the most widely applied approaches to understand functional responses, including: (1) a complex and important role of random- or individual-level intercepts in adjusting individual-level regression coefficients as resource availability changes and (2) a sensitivity of results to poorly informed individual-level coefficients estimated for animals with low availability of a given resource. Consequently, we provide guidance on applying approaches that are insensitive to these issues with the goal of advancing our understanding of animal habitat ecology and management. Finally, we characterize the management implications of assuming similarity between the current approaches to model functional responses with two empirical data sets of federally threatened species: Canada lynx (Lynx canadensis) in the United States and woodland caribou (Rangifer tarandus caribou) in Canada. Collectively, our assessment helps clarify the similarities and differences among current approaches and, therefore, assists the integration of functional responses into the mainstream of habitat ecology and management.


Assuntos
Ecossistema , Rena , Distribuição Animal , Animais , Canadá , Ecologia
8.
Ecol Appl ; 28(4): 1032-1043, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457298

RESUMO

Understanding intrinsic and extrinsic drivers of reproductive success is central to advancing animal ecology and characterizing critical habitat. Unfortunately, much of the work examining drivers of reproductive success is biased toward particular groups of organisms (e.g., colonial birds, large herbivores, capital breeders). Long-lived mammalian carnivores that are of conservation concern, solitary, and territorial present an excellent situation to examine intrinsic and extrinsic drivers of reproductive success, yet they have received little attention. Here, we used a Canada lynx (Lynx canadensis) data set, from the southern periphery of their range, to determine if reproductive success in a solitary carnivore was consistent with capital or income breeding. We radio-marked and monitored 36 female Canada lynx for 98 lynx years. We evaluated how maternal characteristics and indices of food supply (via forest structure) in core areas influenced variation in body condition and reproductive success. We characterized body condition as mass/length and reproductive success as whether a female produced a litter of kittens for a given breeding season. Consistent with life-history theory, we documented a positive effect of maternal age on body condition and reproductive success. In contrast to predictions of capital breeding, we observed no effect of pre-pregnancy body condition on reproductive success in Canada lynx. However, we demonstrated statistical effects of forest structure on reproductive success in Canada lynx, consistent with predictions of income breeding. The forest characteristics that defined high success included (1) abundant and connected mature forest and (2) intermediate amounts of small-diameter regenerating forest. These attributes are consistent with providing abundant, temporally stable, and accessible prey resources (i.e., snowshoe hares; Lepus americanus) for lynx and reinforce the bottom-up mechanisms influencing Canada lynx populations. Collectively, our results suggest that lynx on the southern range periphery exhibit an income breeding strategy and that forest structure supplies the income important for successful reproduction. More broadly, our insights advance the understanding of carnivore ecology and serve as an important example on integrating long-term field studies with ecological theory to improve landscape management.


Assuntos
Florestas , Lynx , Reprodução , Animais , Feminino , Alimentos , Características de História de Vida , Montana , Análise Espacial
9.
Oecologia ; 185(4): 725-735, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29038862

RESUMO

Anthropogenic disturbances have altered species' distributions potentially impacting interspecific interactions. Interference competition is when one species denies a competing species access to a resource. One mechanism of interference competition is aggression, which can result in altered space-use of a subordinate species due to the threat of harm, otherwise known as a 'landscape of fear'. Alternatively, subordinates might outcompete dominant species in resource-poor environments via a superior ability to extract resources. Our goal was to evaluate spatial predictions of the 'landscape of fear' hypothesis for a carnivore guild in Newfoundland, Canada, where coyotes recently immigrated. Native Newfoundland carnivores include red foxes, Canada lynx, and black bears. We predicted foxes and lynx would avoid coyotes because of their larger size and similar dietary niches. We used scat-detecting dogs and genetic techniques to locate and identify predator scats. We then built resource selection functions and tested for avoidance by incorporating predicted values of selection for the alternative species into the best supported models of each species. We found multiple negative relationships, but notably did not find avoidance by foxes of areas selected by coyotes. While we did find that lynx avoided coyotes, we also found a reciprocal relationship. The observed patterns suggest spatial partitioning and not coyote avoidance, although avoidance could still be occurring at different spatial or temporal scales. Furthermore, Newfoundland's harsh climate and poor soils may swing the pendulum of interspecific interactions from interference competition to exploitative competition, where subordinates outcompete dominant competitors through a superior ability to extract resources.


Assuntos
Carnívoros/fisiologia , Animais , Canadá , Clima , Dieta , Ecossistema , Comportamento Predatório
10.
Ecol Evol ; 7(1): 125-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070281

RESUMO

Snowshoe hares (Lepus americanus) are an ecologically important herbivore because they modify vegetation through browsing and serve as a prey resource for multiple predators. We implemented a multiscale approach to characterize habitat relationships for snowshoe hares across the mixed conifer landscape of the northern Rocky Mountains, USA. Our objectives were to (1) assess the relationship between horizontal cover and snowshoe hares, (2) estimate how forest metrics vary across the gradient of snowshoe hare use and horizontal cover, and (3) model and map snowshoe hare occupancy and intensity of use. Results indicated that both occupancy and intensity of use by snowshoe hares increased with horizontal cover and that the effect became stronger as intensity of use increased. This underscores the importance of dense horizontal cover to achieve high use, and likely density, of snowshoe hares. Forest structure in areas with high snowshoe hare use and horizontal cover was characterized as multistoried with dense canopy cover and medium-sized trees (e.g., 12.7-24.4 cm). The abundance of lodgepole pine (Pinus contorta) was associated with snowshoe hare use within a mixed conifer context, and the only species to increase in abundance with horizontal cover was Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa). Our landscape-level modeling produced similar patterns in that we observed a positive effect of lodgepole pine and horizontal cover on both occupancy and use by snowshoe hares, but we also observed a positive yet parabolic effect of snow depth on snowshoe hare occupancy. This work is among the first to characterize the multiscale habitat relationships of snowshoe hares across a mixed conifer landscape as well as to map their occupancy and intensity of use. Moreover, our results provide stand- and landscape-level insights that directly relate to management agencies, which aids in conservation efforts of snowshoe hares and their associated predators.

11.
Ecol Evol ; 5(22): 5383-5393, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151140

RESUMO

Red-naped sapsuckers (Sphyrapicus nuchalis) are functionally important because they create sapwells and cavities that other species use for food and nesting. Red-naped sapsucker ecology within aspen (Populus tremuloides) has been well studied, but relatively little is known about red-naped sapsuckers in conifer forests. We used light detection and ranging (LiDAR) data to examine occupancy patterns of red-naped sapsuckers in a conifer-dominated system. We surveyed for sapsuckers at 162 sites in northern Idaho, USA, during 2009 and 2010. We used occupancy models and an information-theoretic approach to model sapsucker occupancy as a function of four LiDAR-based metrics that characterized vegetation structure and tree harvest, and one non-LiDAR metric that characterized distance to major roads. We evaluated model support across a range of territory sizes using Akaike's information criterion. Top model support was highest at the 4-ha extent, which suggested that 4 ha was the most relevant scale describing sapsucker occupancy. Sapsuckers were positively associated with variation of canopy height and harvested area, and negatively associated with shrub and large tree density. These results suggest that harvest regimes and structural diversity of vegetation at moderate extents (e.g., 4 ha) largely influence occurrence of red-naped sapsuckers in conifer forests. Given the current and projected declines of aspen populations, it will be increasingly important to assess habitat relationships, as well as demographic characteristics, of aspen-associated species such as red-naped sapsuckers within conifer-dominated systems to meet future management and conservation goals.

12.
Evol Appl ; 5(6): 619-28, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028402

RESUMO

Elusive carnivores present a challenge to managers because traditional survey methods are not suitable. We applied a genetic approach using museum specimens to examine how historical and recent conditions influenced the demographic history of Puma concolor in western and southern Texas, USA. We used 10 microsatellite loci and indexed population trends by estimating historical and recent genetic diversity, genetic differentiation and effective population size. Mountain lions in southern Texas exhibited a 9% decline in genetic diversity, whereas diversity remained stable in western Texas. Genetic differentiation between western and southern Texas was minimal historically (F(ST) = 0.04, P < 0.01), but increased 2-2.5 times in our recent sample. An index of genetic drift for southern Texas was seven to eight times that of western Texas, presumably contributing to the current differentiation between western and southern Texas. Furthermore, southern Texas exhibited a >50% temporal decline in effective population size, whereas western Texas showed no change. Our results illustrate that population declines and genetic drift have occurred in southern Texas, likely because of contemporary habitat loss and predator control. Population monitoring may be needed to ensure the persistence of mountain lions in the southern Texas region. This study highlights the utility of sampling museum collections to examine demographic histories and inform wildlife management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...