Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Comput Biol Med ; 179: 108913, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39047508

RESUMO

Machine learning has been employed in recognizing protein localization at the subcellular level, which highly facilitates the protein function studies, especially for those multi-label proteins that localize in more than one organelle. However, existing works mostly study the qualitative classification of protein subcellular locations, ignoring fraction of one multi-label protein in different locations. Actually, about 50 % proteins are multi-label proteins, and the ignorance of quantitative information highly restricts the understanding of their spatial distribution and functional mechanism. One reason of the lack of quantitative study is the insufficiency of quantitative annotations. To address the data shortage problem, here we proposed a generative model, PLocGAN, which could generate cell images with conditional quantitative annotation of the fluorescence distribution. The model was a conditional generative adversarial network, in which the condition learning utilized partial label learning to overcome the lack of training labels and allowed training with only qualitative labels. Meanwhile, it used contrastive learning to enhance diversity of the generated images. We assessed the PLocGAN on four pixel-fused synthetic datasets and one real dataset, and demonstrated that the model could generate images with good fidelity and diversity, outperforming existing state-of-the-art generative methods. To verify the utility of PLocGAN in the quantitative prediction of protein subcellular locations, we replaced the training images with generated quantitative images and built prediction models, and found that they had a boosting effect on the quantitative estimation. This work demonstrates the effectiveness of deep generative models in bioimage analysis, and provides a new solution for quantitative subcellular proteomics.

3.
Small ; : e2400201, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031757

RESUMO

Water electrolysis has become an attractive hydrogen production method. Oxygen evolution reaction (OER) is a bottleneck of water splitting as its four-electron transfer procedure presents sluggish reaction kinetics. Designing composite catalysts with high performance for efficient OER still remains a huge challenge. Here, the P-doped cobalt oxide/NiFe layered double hydroxides (P-CoOX/NiFe LDHs) composite catalysts with amorphous/crystalline interfaces are successfully prepared for OER by hydrothermal-electrodeposition combined method. The results of electrochemical characterizations, operando Raman spectra, and DFT theoretical calculations have demonstrated the electrons in the P-CoOX/NiFe LDHs heterointerfaces are easily transferred from Ni2+ to Co3+ because that the amorphous configuration of P-CoOX can well induce Ni-O-Co orbital coupling. The electron transfer of Ni2+ to the surrounding Fe3+ and Co3+ will lead to the unoccupied eg orbitals of Ni3+ that can promote water dissociation and accelerate *OOH migration to improve OER catalytic performance. The optimized P-CoOX/NiFe LDHs exhibit superior catalytic performance for OER with a very low overpotential of 265 mV at 300 mA cm-2 and excellent long-term stability of 500 h with almost no attenuation at 100 mA cm-2. This work will provide a new method to design high-performance NiFe LDHs-based catalysts for OER.

4.
Front Pharmacol ; 15: 1423684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045048

RESUMO

Multidrug resistance is a substantial obstacle in treating non-small cell lung cancer (NSCLC) with therapies like cisplatin (DDP)-based adjuvant chemotherapy and EGFR-tyrosine kinase inhibitors (TKIs). Aaptamine-7 (AP-7), a benzonaphthyridine alkaloid extracted from Aaptos aaptos sponge, has been shown to exhibit a broad spectrum of anti-tumor activity. However, the anti-cancer activity of AP-7 in combination with DDP and its molecular mechanisms in multidrug-resistant NSCLC are not yet clear. Our research indicates that AP-7 bolsters the growth inhibition activity of DDP on multidrug-resistant NSCLC cells. AP-7 notably disrupts DDP-induced cell cycle arrest and amplifies DDP-induced DNA damage effects in these cells. Furthermore, the combination of AP-7 and DDP downregulates Chk1 activation, interrupts the DNA damage repair-dependent Chk1/CDK1 pathway, and helps to overcome drug resistance and boost apoptosis in multidrug-resistant NSCLC cells and a gefitinib-resistant xenograft mice model. In summary, AP-7 appears to enhance DDP-induced DNA damage by impeding the Chk1 signaling pathway in multidrug-resistant NSCLC, thereby augmenting growth inhibition, both in vitro and in vivo. These results indicate the potential use of AP-7 as a DDP sensitizer in the treatment of multidrug-resistant NSCLC.

5.
Int J Cardiol ; : 132395, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074620

RESUMO

After acute myocardial infarction (AMI), intercellular communication is crucial for maintaining cardiac homeostasis and patient survival. Exosomes secreted by cardiomyocytes serve as carriers for transporting microRNA(miRNAs), participating in intercellular signaling and the regulation of cardiac function. This study aims to investigate the role of exosomal microRNA-30a(miR-30a) during AMI and its underlying mechanisms. AMI was induced by permanent ligation of the left anterior descending (LAD) artery in C57BL/6 mice. The expression of miR-30a in mice was respectively enhanced and inhibited by administering agomiR-30a and antagomiR-30a. Using HL-1 cardiomyocytes and RAW264.7 macrophages for in vitro experiments, HL-1 cardiomyocytes were cultured under hypoxic conditions to induce ischemic injury. Following isolation and injection of exosomals, a variety of validation methods were utilized to assess the expression of miR-30a, and investigate the effects of enriched exosomal miR-30a on the state of cardiomyocytes. After AMI, the level of exosomal miR-30a in the serum of mice significantly increased and was highly enriched in cardiac tissue. Cardiomyocytes treated with agomiR-30a and miR-30a-enriched exosomes exhibited inhibition of cell autophagy, increased cell apoptosis, mice showed an larger myocardial infarct area and poorer cardiac function. Exosomes released from hypoxic cardiomyocytes transferred miR-30a to cardiac resident macrophages, promoting the polarization into pro-inflammatory M1 macrophages. In conclusion, murine exosomal miR-30a exacerbates cardiac dysfunction post-AMI by disrupting the autophagy-apoptosis balance in cardiomyocytes and polarizing cardiac resident macrophages into pro-inflammatory M1 macrophages. Modulating the expression of miR-30a may reduce cardiac damage following AMI, and targeting exosomal miR-30a could be a potential therapeutic approach for AMI.

6.
Rofo ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074797

RESUMO

To explore the value of CT-based radiomics machine learning models for differentiating enchondroma from atypical cartilaginous tumor (ACT) in long bones and methods to improve model performance.59 enchondromas and 53 ACTs in long bones confirmed by pathology were collected retrospectively. The features were extracted from preoperative CT images of these patients, and least absolute shrinkage and selection operator (LASSO) regression was used for feature selection and dimensionality reduction. The selected features were used to construct classification models by thirteen machine learning algorithms. The data set was randomly divided into a training set and a test set at a proportion of 7:3 by ten-fold cross-validation to evaluate the performance of these models.A total of 1199 features were extracted, 9 features were selected, and 13 radiomics machine learning models were constructed. The area under the curve (AUC) of 11 models was more than 0.8, and that of 3 models was more than 0.9. The Extremely Randomized Trees model achieved the best performance (AUC = 0.9375 ± 0.0884), followed by the Adaptive Boosting model (AUC = 0.9188 ± 0.1010) and the Linear Discriminant Analysis model (AUC = 0.9062 ± 0.1459).CT-based radiomics machine learning models had great ability to distinguish enchondroma and ACT in long bones. By using filters to deeply mine high-order features in the original image and selecting appropriate machine learning algorithms, the performance of the model can be improved. · CT-based radiomics machine learning models can distinguish enchondroma and ACT in long bones.. · Using filters and selecting advanced machine learning algorithms can improve model performance.. · Clinical features have limited utility in distinguishing enchondroma and ACT in long bones.. · Hong R, Li Q, Ma J et al. Computed tomography-based radiomics machine learning models for differentiating enchondroma and atypical cartilaginous tumor in long bones. Fortschr Röntgenstr 2024; DOI 10.1055/a-2344-5398.

7.
Free Radic Biol Med ; 222: 173-186, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871197

RESUMO

Regulation of the redox system by branched-chain amino acid transferase 1 (BCAT1) is of great significance in the occurrence and development of diseases, but the relationship between BCAT1 and subarachnoid hemorrhage (SAH) is still unknown. Ferroptosis, featured by iron-dependent lipid peroxidation accompanied by the depletion of glutathione peroxidase 4 (GPX4), has been implicated in the pathological process of early brain injury after subarachnoid hemorrhage. This study established SAH model by endovascular perforation and adding oxyhemoglobin (Hb) to HT22 cells and delved into the mechanism of BCAT1 in SAH-induced ferroptotic neuronal cell death. It was found that SAH-induced neuronal ferroptosis could be inhibited by BCAT1 overexpression (OE) in rats and HT22 cells, and BCAT1 OE alleviated neurological deficits and cognitive dysfunction in rats after SAH. In addition, the effect of BCAT1 could be reversed by the Ly294002, a specific inhibitor of the PI3K pathway. In summary, our present study indicated that BCAT1 OE alleviated early brain injury EBI after SAH by inhibiting neuron ferroptosis via activation of PI3K/AKT/mTOR pathway and the elevation of GPX4. These results suggested that BCAT1 was a promising therapeutic target for subarachnoid hemorrhage.

8.
Opt Express ; 32(8): 14090-14101, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859364

RESUMO

We propose what we believe to be a novel direct detection phase-sensitive optical time-domain reflectometry (Φ-OTDR) based on ultra-weak fiber Bragg grating (UWFBG) array to achieve distributed vibration measurements with exceptional sensitivity and remarkable stability. Our system employs a pulse modulator to generate a double pulse and achieves linear phase modulation of one pulse by one cycle through a phase modulator. The phase change can be quantitatively demodulated using our proposed N-step phase-shifted demodulation algorithm. This method effectively mitigates the influence of phase noise of the laser and the pulse modulator, while also eliminating fluctuations in the half-voltage of the phase modulator. Compared with the existing phase modulation methods, our method avoids stringent requirements for the stability and precision of phase modulation. Moreover, we propose a phase-shifted approximation method, breaking the limitation of sensing length on the traditional differential approximation method and improving the accuracy significantly. The technique's effectiveness is experimentally demonstrated on a 1 km UWFBG array with a reflectivity of -40 dB to -45 dB and a spatial resolution of 10 m. Vibrations with different amplitudes are measured quantitatively with good linearity. The low-frequency self-noise is greatly suppressed and the overall self-noise is -54.3 dB rad2/Hz.

9.
Curr Biol ; 34(12): 2644-2656.e7, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38810638

RESUMO

An epidemic of sleep loss currently affects modern societies worldwide and is implicated in numerous physiological disorders, including pain sensitization, although few studies have explored the brain pathways affected by active sleep deprivation (ASD; e.g., due to recreation). Here, we describe a neural circuit responsible for pain sensitization in mice treated with 9-h non-stress ASD. Using a combination of advanced neuroscience methods, we found that ASD stimulates noradrenergic inputs from locus coeruleus (LCNA) to glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu). Moreover, artificial inhibition of this LCNA→S1HLGlu pathway alleviates ASD-induced pain sensitization in mice, while chemogenetic activation of this pathway recapitulates the pain sensitization observed following ASD. Our study thus implicates activation of the LCNA→S1HLGlu pathway in ASD-induced pain sensitization, expanding our fundamental understanding of the multisystem interplay involved in pain processing.


Assuntos
Locus Cerúleo , Dor , Privação do Sono , Córtex Somatossensorial , Animais , Camundongos , Privação do Sono/fisiopatologia , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiopatologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Masculino , Norepinefrina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Vias Neurais/fisiopatologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38814831

RESUMO

Aims: Downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffering ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. Results: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species as well as decreases in the activities of antioxidative enzymes, concomitant with a downregulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1 and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), subsequently disrupted the assembly of CARD11, B cell lymphoma 10 (BCL10), and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. Innovation and Conclusion: The E3 ubiquitin ligase function of MALT1 accounts for the downregulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and the subsequent activation of MALT1.

11.
Clin Immunol ; 263: 110232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701960

RESUMO

IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.


Assuntos
COVID-19 , Glomerulonefrite por IGA , SARS-CoV-2 , Humanos , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/sangue , COVID-19/imunologia , COVID-19/complicações , Feminino , Masculino , Adulto , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Glomérulos Renais/patologia , Glomérulos Renais/imunologia , Complemento C5a/imunologia , Complemento C5a/metabolismo
12.
Clin Exp Metastasis ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767757

RESUMO

To develop a clinical-radiomics nomogram based on spectral CT multi-parameter images for predicting lymph node metastasis in colorectal cancer. A total of 76 patients with colorectal cancer and 156 lymph nodes were included. The clinical data of the patients were collected, including gender, age, tumor location and size, preoperative tumor markers, etc. Three sets of conventional images in the arterial, venous, and delayed phases were obtained, and six sets of spectral images were reconstructed using the arterial phase spectral data, including virtual monoenergetic images (40 keV, 70 keV, 100 keV), iodine density maps, iodine no water maps, and virtual non-contrast images. Radiomics features of lymph nodes were extracted from the above images, respectively. Univariate analysis and least absolute shrinkage and selection operator (LASSO) regression were used to select features. A clinical model was constructed based on age and carcinoembryonic antigen (CEA) levels. The radiomics features selected were used to generate a composed radiomics signature (Com-RS). A nomogram was developed using age, CEA, and the Com-RS. The models' prediction efficiency, calibration, and clinical application value were evaluated by the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis, respectively. The nomogram outperforms the clinical model and the Com-RS (AUC = 0.879, 0.824). It is well calibrated and has great clinical application value. This study developed a clinical-radiomics nomogram based on spectral CT multi-parameter images, which can be used as an effective tool for preoperative personalized prediction of lymph node metastasis in colorectal cancer.

13.
BMC Med Imaging ; 24(1): 117, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773416

RESUMO

BACKGROUND: Coronary inflammation induces changes in pericoronary adipose tissue (PCAT) can be detected by coronary computed tomography angiography (CCTA). Our aim was to investigate whether different PCAT radiomics model based on CCTA could improve the prediction of major adverse cardiovascular events (MACE) within 3 years. METHODS: This retrospective study included 141 consecutive patients with MACE and matched to patients with non-MACE (n = 141). Patients were randomly assigned into training and test datasets at a ratio of 8:2. After the robust radiomics features were selected by using the Spearman correlation analysis and the least absolute shrinkage and selection operator, radiomics models were built based on different machine learning algorithms. The clinical model was then calculated according to independent clinical risk factors. Finally, an overall model was established using the radiomics features and the clinical factors. Performance of the models was evaluated for discrimination degree, calibration degree, and clinical usefulness. RESULTS: The diagnostic performance of the PCAT model was superior to that of the RCA-model, LAD-model, and LCX-model alone, with AUCs of 0.723, 0.675, 0.664, and 0.623, respectively. The overall model showed superior diagnostic performance than that of the PCAT-model and Cli-model, with AUCs of 0.797, 0.723, and 0.706, respectively. Calibration curve showed good fitness of the overall model, and decision curve analyze demonstrated that the model provides greater clinical benefit. CONCLUSION: The CCTA-based PCAT radiomics features of three major coronary arteries have the potential to be used as a predictor for MACE. The overall model incorporating the radiomics features and clinical factors offered significantly higher discrimination ability for MACE than using radiomics or clinical factors alone.


Assuntos
Tecido Adiposo , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Humanos , Angiografia por Tomografia Computadorizada/métodos , Masculino , Feminino , Tecido Adiposo/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos de Casos e Controles , Angiografia Coronária/métodos , Aprendizado de Máquina , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Tecido Adiposo Epicárdico , Radiômica
14.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628056

RESUMO

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Assuntos
Borboletas , Animais , Borboletas/genética , Interferência de RNA , RNA de Cadeia Dupla , Insetos/genética , Inativação Gênica
15.
Inorg Chem ; 63(19): 8925-8937, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38683480

RESUMO

The development of efficient urea oxidation reaction (UOR) catalysts helps UOR replace the oxygen evolution reaction (OER) in hydrogen production from water electrolysis. Here, we prepared Fe-doped Ni2P/NiSe2 composite catalyst (Fe-Ni2P/NiSe2-12) by using phosphating-selenizating and acid etching to increase the intrinsic activity and active areas. Spectral characterization and theoretical calculations demonstrated that electrons flowed through the Ni-P-Fe-interface-Ni-Se-Fe, thus conferring high UOR activity to Fe-Ni2P/NiSe2-12, which only needed 1.39 V vs RHE to produce the current density of 100 mA cm-2. Remarkably, this potential was 164 mV lower than that required for the OER under the same conditions. Furthermore, EIS demonstrated that UOR driven by the Fe-Ni2P/NiSe2-12 exhibited faster interfacial reactions, charge transfer, and current response compared to OER. Consequently, the Fe-Ni2P/NiSe2-12 catalyst can effectively prevent competition with OER and NSOR, making it suitable for efficient hydrogen production in UOR-assisted water electrolysis. Notably, when water electrolysis is operated at a current density of 40 mA cm-2, this UOR-assisted system can achieve a decrease of 140 mV in the potential compared to traditional water electrolysis. This study presents a novel strategy for UOR-assisted water splitting for energy-saving hydrogen production.

16.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583797

RESUMO

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Assuntos
Proteína HMGB1 , Hiperplasia , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteínas do Fator Nuclear 90 , Estabilidade de RNA , Fator de Transcrição STAT3 , Túnica Íntima , Animais , Humanos , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Proteínas do Fator Nuclear 90/metabolismo , Proteínas do Fator Nuclear 90/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia
17.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551023

RESUMO

Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.


The interspecific hybrid offspring of a domestic bull (Bos taurus) and a yak (Bos grunniens) display heterosis in meat and milk production. The hybrid offspring are particularly adaptable to the harsh environments of the Qinghai-Tibet Plateau. However, the male F1 to F3 offspring of this interspecies hybrid are infertile, and spermatogenesis is arrested at meiosis preventing the prolonged utilization of the benefits of heterosis. This study aimed to identify the testis-specific genes and alternative splicing (AS) associated with hybrid male sterility using RNA-Seq data from the liver and testis tissues of domestic cattle, yaks, and their F1 offspring (dzo). The expression of the testis-specific genes became disordered during mitosis and meiosis in dzo. Their testis-specific genes with AS events were enriched during synapsis and in the piRNA biosynthetic processes. In addition, we identified the potential splicing factors associated with abnormal testis-specific AS gene expression in dzo. These results reveal the important role of AS in the meiotic arrest of dzo.


Assuntos
Processamento Alternativo , Infertilidade Masculina , Fígado , Testículo , Animais , Masculino , Bovinos/genética , Bovinos/fisiologia , Testículo/metabolismo , Fígado/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Espermatogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização Genética , RNA-Seq/veterinária
18.
Zootaxa ; 5419(3): 419-429, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38480316

RESUMO

The genus Oxyartes currently comprises 17 taxa, of which 12 are found in China, representing the high diversity in China. This list includes the two species from China as described in this paper. The first is a new remarkable species O. bouxraeuz sp. nov. collected from Gulinqing township, Yunnan. The second is a newly recorded species, O. cresphontes. This species is reported from Mdog, Xizang, China. A key to this genus from China is presented. Type specimens are deposited in the Yunnan Agricultural University (YNAU).


Assuntos
Neópteros , Humanos , Animais , China , Universidades
19.
Biomacromolecules ; 25(4): 2438-2448, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502912

RESUMO

The treatment of infected wounds faces substantial challenges due to the high incidence and serious infection-related complications. Natural-based hydrogel dressings with favorable antibacterial properties and strong applicability are urgently needed. Herein, we developed a composite hydrogel by constructing multiple networks and loading ciprofloxacin for infected wound healing. The hydrogel was synthesized via a Schiff base reaction between carboxymethyl chitosan and oxidized sodium alginate, followed by the polymerization of the acrylamide monomer. The resultant hydrogel dressing possessed a good self-healing ability, considerable compression strength, and reliable compression fatigue resistance. In vitro assessment showed that the composite hydrogel effectively eliminated bacteria and exhibited an excellent biocompatibility. In a model of Staphylococcus aureus-infected full-thickness wounds, wound healing was significantly accelerated without scars through the composite hydrogel by reducing wound inflammation. Overall, this study opens up a new way for developing multifunctional hydrogel wound dressings to treat wound infections.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/farmacologia , Cicatrização , Antibacterianos/farmacologia , Ciprofloxacina , Bandagens
20.
Talanta ; 274: 125965, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552480

RESUMO

In this paper, a few-layer WS2 nanosheets-based electrochemical biosensor was fabricated for the highly sensitive detection of breast cancer tumor marker miRNA-4484. Firstly, few-layer WS2 nanosheets were prepared by shear stripping and characterized by SEM, TEM, AFM and UV spectrophotometer. After modification of few-layer WS2 nanosheets on the electrode surface, the miRNA probe was fixed on the few-layer WS2 nanosheets by polycytosine (PolyC). Then short-chain miRNA containing PolyC was used as the blocking agent to close the excess active sites on the surface of WS2 nanosheets to complete the fabrication of the sensor biosensing interface. Finally, the current changes caused by the specific binding of miRNA-4484 to the probe were analyzed by differential pulse voltammetry (DPV). The results showed that the sensor had a good linear relationship for the detection of miRNA-4484 in the concentration range of 1 aM-100 fM, and the detection limit was as low as 1.61 aM. In addition, the electrochemical sensor had excellent selectivity, stability and reproducibility. The artificial sample tests indicated that the developed biosensors have the potential for clinical application in the future.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Nanoestruturas , Sulfetos , Compostos de Tungstênio , Técnicas Biossensoriais/métodos , MicroRNAs/análise , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Humanos , Sulfetos/química , Nanoestruturas/química , Compostos de Tungstênio/química , Limite de Detecção , Eletrodos , Neoplasias da Mama/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...