RESUMO
Neutralizing monoclonal antibodies hold great potential for prevention of human immunodeficiency virus (HIV) acquisition. IgG is the most abundant antibody in human serum, has a long half-life, and potent effector functions, making it a prime candidate for an HIV prevention therapeutic. We combined Positron Emission Tomography imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-green fluorescent protein HIV (PA-GFP-BaL) and fluorescently labeled HGN194 IgG1 to determine whether intravenously instilled IgG influences viral interaction with mucosal barriers and viral penetration in colorectal tissue 2 h after rectal viral challenge. Our results show that IgG1 did not alter the number of virions found throughout the colon or viral penetration into the epithelium of the rectum or descending colon. A minor increase in virions was observed in the transverse colon of IgG1 treated animals. Overall, the number of viral particles found in the mesenteric lymph nodes was low. However, IgG1 administration resulted in a significant reduction of virions found in mesenteric lymph nodes. Taken together, our results show that HGN194 IgG1 does not prevent virions from penetrating into the colorectal mucosa but may perturb HIV virion access to the lymphatic system.
RESUMO
To improve current and future use of existing (oral, injectable) and potential future (implants, douches) pre-exposure prophylaxis (PrEP) products, we must understand product preferences relative to one another, among gay and bisexual men (GBM), and physicians who prescribe PrEP. We completed an online discrete choice experiment (DCE) with separate groups of GBM and/or physicians from the United States, South Africa, Spain, and Thailand. Participants were presented information on PrEP products, including daily pills, event-driven pills (2-1-1 regimen), injections, subdermal implants (dissolvable, removable), and rectal douches. Next, they completed a choice exercise in which they were shown 10 screens, each presenting 3 of the aforementioned products at a time with 11 attributes for physicians and 10 attributes for GBM. For the attributes that were not constant, one level was shown per screen for each product. Participants selected the product they preferred most and rated their likelihood to select (GBM) or recommend (physicians) that product. Data were modeled using hierarchical Bayes estimation; resulting model coefficients were used to develop attribute importance measures and product preferences. For GBM across all countries, if all aforementioned PrEP products were on the market at the same time, over 90% of GBM would use some form of PrEP; 100% of physicians would recommend at least one of the PrEP products. There were variations in product preference by country. GBM in the United States and Thailand preferred the injection (21.7%, 22.9%, respectively), while the dissolvable implant was preferred in South Africa and Spain (19.9%, 19.8%, respectively). In the United States, South Africa, and Spain (where physician data were available), physicians were most likely to recommend the dissolvable implant (37.2%, 40.6%, 38.3%, respectively).
Assuntos
Médicos , Profilaxia Pré-Exposição , Humanos , Masculino , Profilaxia Pré-Exposição/métodos , Médicos/psicologia , Adulto , Estados Unidos , Infecções por HIV/prevenção & controle , Pessoa de Meia-Idade , Tailândia , Homossexualidade Masculina/psicologia , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/administração & dosagem , África do Sul , Espanha , Comportamento de Escolha , Minorias Sexuais e de Gênero , Adulto JovemRESUMO
To successfully infect a cell, HIV-1 has to overcome several host barriers while exploiting cellular cofactors. HIV-1 infection is highly inefficient with the great majority of viral particles not being able to successfully integrate into the target cell genome. Nonproductive HIV-1 particles are degraded or accumulated in cellular compartments. Thus, it becomes hard to distinguish between viral behaviors that lead to effectively infecting the cell from the ones that do not by using traditional methods. Here, we describe the infectious virus tracking method that detects and quantifies individual fluorescent viral particles over time and links viral particle behavior to its infectivity. This method employs live-cell imaging at ultra-low MOIs to detect the outcome of infection for every HIV-1 particle.
Assuntos
HIV-1 , HIV-1/fisiologia , Humanos , Vírion , Infecções por HIV/virologia , Microscopia de Fluorescência/métodos , Células CultivadasRESUMO
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-ß blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a 64Cu-DOTA-F(ab')2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-ß inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Feminino , Animais , Fator de Crescimento Transformador beta , Replicação Viral , Leucócitos Mononucleares , Linfócitos T CD4-Positivos , Carga ViralRESUMO
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of the anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirmed the latency reversal properties of in vivo TGF-ß blockade, decreased viral reservoirs and stimulated immune responses. Eight SIV-infected macaques on suppressive ART were treated with 4 2-week cycles of galunisertib. ART was discontinued 3 weeks after the last dose, and macaques euthanized 6 weeks after ART-interruption(ATI). One macaque did not rebound, while the remaining rebounded between week 2 and 6 post-ATI. Galunisertib led to viral reactivation as indicated by plasma viral load and immunoPET/CT with the 64Cu-DOTA-F(ab')2-p7D3-probe. Half to 1 Log decrease in cell-associated (CA-)SIV DNA was detected in lymph nodes, gut and PBMC, while intact pro-virus in PBMC decreased by 3-fold. No systemic increase in inflammatory cytokines was observed. High-dimensions cytometry, bulk and single-cell RNAseq revealed a shift toward an effector phenotype in T and NK cells. In summary, we demonstrated that galunisertib, a clinical stage TGFß inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
RESUMO
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Assuntos
Infecções por HIV , HIV-1 , MicroRNAs , Humanos , HIV-1/fisiologia , Latência Viral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/metabolismoRESUMO
The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.
Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Formação de Anticorpos , Infecções por HIV/prevenção & controle , Imunização Secundária/métodos , Especificidade de Anticorpos , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIVRESUMO
The study described herein is a continuation of our work in which we developed a methodology to identify small foci of transduced cells following rectal challenge of rhesus macaques with a non-replicative luciferase reporter virus. In the current study, the wild-type virus was added to the inoculation mix and twelve rhesus macaques were necropsied 2-4 days after the rectal challenge to study the changes in infected cell phenotype as the infection progressed. Relying on luciferase reporter we noted that both anus and rectum tissues are susceptible to the virus as early as 48h after the challenge. Small regions of the tissue containing luciferase-positive foci were further analyzed microscopically and were found to also contain cells infected by wild-type virus. Phenotypic analysis of the Env and Gag positive cells in these tissues revealed the virus can infect diverse cell populations, including but not limited to Th17 T cells, non Th17 T cells, immature dendritic cells, and myeloid-like cells. The proportions of the infected cell types, however, did not vary much during the first four days of infection when anus and rectum tissues were examined together. Nonetheless, when the same data was analyzed on a tissue-specific basis, we found significant changes in infected cell phenotypes over the course of infection. For anal tissue, a statistically significant increase in infection was observed for Th17 T cells and myeloid-like cells, while in the rectum, the non-Th17 T cells showed the biggest temporal increase, also of statistical significance.
RESUMO
Although vaccination efforts have expanded, there are still gaps in our understanding surrounding the immune response to SARS-CoV-2. Measuring IgG Fc glycosylation provides insight into an infected individual's inflammatory state, among other functions. We set out to interrogate bulk IgG glycosylation changes from SARS-CoV-2 infection and vaccination, using plasma from mild or hospitalized COVID-19 patients, and from vaccinated individuals. Inflammatory glycans are elevated in hospitalized COVID-19 patients and increase over time, while mild patients have anti-inflammatory glycans that increase over time, including increased sialic acid correlating with RBD antibody levels. Vaccinated individuals with low RBD antibody levels and low neutralization have the same IgG glycan traits as hospitalized COVID-19 patients. In addition, a small vaccinated cohort reveals a decrease in inflammatory glycans associated with peak IgG concentrations and neutralization. This report characterizes the bulk IgG glycome associated with COVID-19 severity and vaccine responsiveness and can help guide future studies into SARS-CoV-2 protective immunity.
Assuntos
COVID-19 , Vacinas , Humanos , Formação de Anticorpos , Glicosilação , SARS-CoV-2 , Imunoglobulina G , Anticorpos AntiviraisRESUMO
TGF-ß plays a critical role in maintaining immune cells in a resting state by inhibiting cell activation and proliferation. Resting HIV-1 target cells represent the main cellular reservoir after long-term antiretroviral therapy (ART). We hypothesized that releasing cells from TGF-ß-driven signaling would promote latency reversal. To test our hypothesis, we compared HIV-1 latency models with and without TGF-ß and a TGF-ß type 1 receptor inhibitor, galunisertib. We tested the effect of galunisertib in SIV-infected, ART-treated macaques by monitoring SIV-env expression via PET/CT using the 64Cu-DOTA-F(ab')2 p7D3 probe, along with plasma and tissue viral loads (VLs). Exogenous TGF-ß reduced HIV-1 reactivation in U1 and ACH-2 models. Galunisertib increased HIV-1 latency reversal ex vivo and in PBMCs from HIV-1-infected, ART-treated, aviremic donors. In vivo, oral galunisertib promoted increased total standardized uptake values in PET/CT images in gut and lymph nodes of 5 out of 7 aviremic, long-term ART-treated, SIV-infected macaques. This increase correlated with an increase in SIV RNA in the gut. Two of the 7 animals also exhibited increases in plasma VLs. Higher anti-SIV T cell responses and antibody titers were detected after galunisertib treatment. In summary, our data suggest that blocking TGF-ß signaling simultaneously increases retroviral reactivation events and enhances anti-SIV immune responses.
Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Radioisótopos de Cobre/farmacologia , Radioisótopos de Cobre/uso terapêutico , Antirretrovirais/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macaca mulatta , Replicação Viral , Fator de Crescimento Transformador beta , ImunidadeRESUMO
A longer acting, removable implant for HIV prevention has the potential to improve uptake of HIV pre-exposure prophylaxis (PrEP) by removing the need for daily adherence to an oral tablet, reducing potential side effects, and eliminating concerns about residual drug following injections. To end the HIV epidemic, we must understand the needs and preferences of groups most affected by HIV (e.g., men who have sex with men; MSM), and the physicians who prescribe PrEP to them. This article describes a discrete choice experiment to estimate the preference share for the implant within a competitive context of other PrEP products (including the oral tablet, dissolvable implant, and injection) and evaluate the impact of potential implant attributes. Physicians who had prescribed oral PrEP (n = 75) and MSM at risk for HIV (n = 175) completed a web-based survey that prompted decision-making about PrEP product preferences. The findings from both physicians and MSM demonstrated that the removable implant could capture a meaningful portion of the preference share, making it feasible to advance in the development pipeline as an important addition to the biomedical HIV prevention toolkit. Among MSM, specifically, the cost of treatment was the most important attribute impacting product preference. Our findings inform implant developers and future payers (e.g., commercial manufacturers, insurance companies) about specific device attributes that will likely affect MSM's willingness to use and physicians' willingness to prescribe this HIV prevention strategy.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Médicos , Profilaxia Pré-Exposição , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/uso terapêuticoRESUMO
We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.
Assuntos
HIV-1 , Capsídeo/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , HIV-1/genética , Humanos , Imunidade Inata , Nucleotidiltransferases/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismoRESUMO
The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis in vivo. Herein, we describe its use in immunoPET to investigate SARS-CoV-2 infection of three rhesus macaques. Using PET/CT imaging of macaques at different times post-SARS-CoV-2 inoculation, we track the 64Cu-labelled CR3022-F(ab')2 probe targeting the spike protein of SARS-CoV-2 to study the dynamics of infection within the respiratory tract and uncover novel sites of infection. Using this method, we uncovered differences in lung pathology between infection with the WA1 isolate and the delta variant, which were readily corroborated through computed tomography scans. The 64Cu-CR3022-probe also demonstrated dynamic changes occurring between 1- and 2-weeks post-infection. Remarkably, a robust signal was seen in the male genital tract (MGT) of all three animals studied. Infection of the MGT was validated by immunofluorescence imaging of infected cells in the testicular and penile tissue and severe pathology was observed in the testes of one animal at 2-weeks post-infection. The results presented here underscore the utility of using immunoPET to study the dynamics of SARS-CoV-2 infection to understand its pathogenicity and discover new anatomical sites of viral replication. We provide direct evidence for SARS-CoV-2 infection of the MGT in rhesus macaques revealing the possible pathologic outcomes of viral replication at these sites.
RESUMO
The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis in vivo. Herein, we describe its use in immunoPET to investigate SARS-CoV-2 infection of three rhesus macaques. Using PET/CT imaging of macaques at different times post-SARS-CoV-2 inoculation, we track the 64Cu-labelled CR3022-F(ab')2 probe targeting the spike protein of SARS-CoV-2 to study the dynamics of infection within the respiratory tract and uncover novel sites of infection. Using this method, we uncovered differences in lung pathology between infection with the WA1 isolate and the delta variant, which were readily corroborated through computed tomography scans. The 64Cu-CR3022-probe also demonstrated dynamic changes occurring between 1- and 2-weeks post-infection. Remarkably, a robust signal was seen in the male genital tract (MGT) of all three animals studied. Infection of the MGT was validated by immunofluorescence imaging of infected cells in the testicular and penile tissue and severe pathology was observed in the testes of one animal at 2-weeks post-infection. The results presented here underscore the utility of using immunoPET to study the dynamics of SARS-CoV-2 infection to understand its pathogenicity and discover new anatomical sites of viral replication. We provide direct evidence for SARS-CoV-2 infection of the MGT in rhesus macaques revealing the possible pathologic outcomes of viral replication at these sites.
RESUMO
Understanding the interplay between commensals, pathogens, and immune cells in the skin and mucosal tissues is critical to improve prevention and treatment of a myriad of diseases. While high-parameter flow cytometry is the current gold standard for immune cell characterization in blood, it is less suitable for mucosal tissues, where structural and spatial information is lost during tissue disaggregation. Immunofluorescence overcomes this limitation, serving as an excellent alternative for studying immune cells in mucosal tissues. However, the use of immunofluorescent microscopy for analyzing clinical samples is hampered by a lack of high-throughput quantitative analysis techniques. In this chapter, we describe methods for sectioning, staining, and imaging whole sections of human foreskin tissue. We also describe methods to automate immune cell quantification from immunofluorescent images, including image preprocessing and methods to quantify both circular and irregularly shaped immune cells using open-source software.
Assuntos
Mucosa , Software , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Coloração e RotulagemRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, ß, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.
Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Vesículas Extracelulares/imunologia , SARS-CoV-2/imunologia , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/sangue , COVID-19/epidemiologia , Chlorocebus aethiops , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos Transgênicos , Testes de Neutralização/métodos , Pandemias/prevenção & controle , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida , Células VeroRESUMO
Long-acting delivery modalities of HIV pre-exposure prophylaxis (PrEP), such as subdermal implants, are in development. To facilitate end-user uptake and sustained use, it is critical to understand potential consumers' and physician prescribers' preferences about, interest in, and relative importance of different implant features. The ordered identification of these key attributes allows implant developers to incorporate this feedback into product design, which theoretically improves acceptability, feasibility, and user experience with the device. In this study, n = 75 PrEP-prescribing physicians and n = 143 men having sex with men (MSM) at risk for HIV completed web-based surveys that directly compared the importance of eight to nine different implant features, respectively. Conjoint analysis determined the importance of these features, relative to each other. Implants presented in the study were well received, with a majority of physicians and MSM indicating that they were likely to recommend or use them. The implant was perceived as unique, reliable, and convenient, as well as able to deliver better compliance. The attributes most critical to the adoption of the implant among physicians and MSM were (1) the chance of becoming infected with HIV while on implant treatment, (2) the length of protection and size of the implant, and (3) the side effect advantages over current PrEP oral pill treatment. Some concerns about the implant included side effects and the product's safety (among MSM) and the cost or insurance coverage level for the implant (both physicians and MSM). There was also some resistance to the implantation procedure itself.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Minorias Sexuais e de Gênero , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Homossexualidade Masculina , Humanos , Masculino , Aceitação pelo Paciente de Cuidados de Saúde , Profilaxia Pré-Exposição/métodos , Inquéritos e QuestionáriosRESUMO
SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.