Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 764293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956929

RESUMO

The Plasmodium ovale curtisi (Poc) prevalence has increased substantially in sub-Saharan African countries as well as regions of Southeast Asia. Poc parasite biology has not been explored much to date; in particular, the invasion mechanism of this malaria parasite remains unclear. In this study, the binding domain of the Duffy binding protein of P. ovale curtisi (PocDBP) was characterized as an important ligand for reticulocyte invasion. The homologous region of the P. vivax Duffy binding protein in PocDBP, named PocDBP-RII herein, was selected, and the recombinant PocDBP-RII protein was expressed in an Escherichia coli system. This was used to analyze reticulocyte binding activity using fluorescence-activated cell sorting and immune serum production in rabbits. The binding specificity was proven by treating reticulocytes with trypsin, chymotrypsin and neuraminidase. The amino acid sequence homology in the N-terminal Cys-rich region was found to be ~ 44% between PvDBP and PocDBP. The reticulocyte binding activity of PocDBP-RII was significantly higher than the erythrocyte binding activity and was concentration dependent. Erythrocyte binding was reduced significantly by chymotrypsin treatment and inhibited by an anti-PocDBP-RII antibody. This finding suggests that PocDBP may be an important ligand in the reticulocyte invasion process of P. ovale curtisi.


Assuntos
Malária Vivax , Plasmodium ovale , Animais , Antígenos de Protozoários , Proteínas de Transporte/genética , Eritrócitos , Plasmodium ovale/genética , Plasmodium ovale/metabolismo , Plasmodium vivax , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Coelhos , Reticulócitos/metabolismo
2.
PLoS Negl Trop Dis ; 14(6): e0008323, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559186

RESUMO

Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Reações Cruzadas , Malária/imunologia , Plasmodium knowlesi/imunologia , Plasmodium vivax/imunologia , Animais , Humanos , Camundongos , Análise de Sequência de Proteína
3.
Malar J ; 17(1): 297, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30119671

RESUMO

BACKGROUND: Vivax malaria is a leading public health concern worldwide. Due to the high prevalence of Duffy-negative blood group population, Plasmodium vivax in Africa historically is less attributable and remains a neglected disease. The interaction between Duffy binding protein and its cognate receptor, Duffy antigen receptor for chemokine plays a key role in the invasion of red blood cells and serves as a novel vaccine candidate against P. vivax. However, the polymorphic nature of P. vivax Duffy binding protein (DBP), particularly N-terminal cysteine-rich region (PvDBPII), represents a major obstacle for the successful design of a DBP-based vaccine to enable global protection. In this study, the level of pvdbpII sequence variations, Duffy blood group genotypes, number of haplotypes circulating, and the natural selection at pvdbpII in Sudan isolates were analysed and the implication in terms of DBP-based vaccine design was discussed. METHODS: Forty-two P. vivax-infected blood samples were collected from patients from different areas of Sudan during 2014-2016. For Duffy blood group genotyping, the fragment that indicates GATA-1 transcription factor binding site of the FY gene (- 33T > C) was amplified by PCR and sequenced by direct sequencing. The region II flanking pvdbpII was PCR amplified and sequenced by direct sequencing. The genetic diversity and natural selection of pvdbpII were done using DnaSP ver 5.0 and MEGA ver 5.0 programs. Based on predominant, non-synonymous, single nucleotide polymorphisms (SNPs), prevalence of Sudanese haplotypes was assessed in global isolates. RESULTS: Twenty SNPs (14 non-synonymous and 6 synonymous) were identified in pvdbpII among the 42 Sudan P. vivax isolates. Sequence analysis revealed that 11 different PvDBP haplotypes exist in Sudan P. vivax isolates and the region has evolved under positive selection. Among the identified PvDBP haplotypes five PvDBP haplotypes were shared among Duffy-negative as well as Duffy-positive individuals. The high selective pressure was mainly found on the known B cell epitopes (H3) of pvdbpII. Comparison of Sudanese haplotypes, based on 10 predominant non-synonymous SNPs with 10 malaria-endemic countries, demonstrated that Sudanese haplotypes were prevalent in most endemic countries. CONCLUSION: This is the first pvdbp genetic diversity study from an African country. Sudanese isolates display high haplotype diversity and the gene is under selective pressure. Haplotype analysis indicated that Sudanese haplotypes are a representative sample of the global population. However, studies with a large number of samples are needed. These findings would be valuable for the development of PvDBP-based malaria vaccine.


Assuntos
Antígenos de Protozoários/classificação , Antígenos de Protozoários/genética , Sistema do Grupo Sanguíneo Duffy/genética , Variação Genética , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/genética , Estudos Transversais , Frequência do Gene , Técnicas de Genotipagem , Haplótipos , Humanos , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Seleção Genética , Análise de Sequência de DNA , Sudão
4.
Malar J ; 17(1): 272, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30049277

RESUMO

BACKGROUND: The rapid process of malaria erythrocyte invasion involves ligand-receptor interactions. Inducing antibodies against specific ligands or receptors that abrogate the invasion process is a key challenge for blood stage vaccine development. However, few candidates were reported and remain to be validated for the discovery of new vaccine candidates in Plasmodium knowlesi. METHODS: In order to investigate the efficacy of pre-clinical vaccine candidates in P. knowlesi-infected human cases, this study describes an in vitro invasion inhibition assay, using a P. knowlesi strain adapted to in vitro growth in human erythrocytes, PkA1-H.1. Recombinant proteins of P. knowlesi Duffy binding protein alpha (PkDBPα) and apical membrane antigen 1 (PkAMA1) were produced in Escherichia coli system and rabbit antibodies were generated from immune animals. RESULTS: PkDBPα and PkAMA1 recombinant proteins were expressed as insoluble and produced as a functional refolded form for this study. Antibodies against PkDBPα and PkAMA1 specifically recognized recombinant proteins and native parasite proteins in schizont-stage parasites on the merozoite organelles. Single and combination of anti-PkDBPα and anti-PkAMA1 antibodies elicited strong growth inhibitory effects on the parasite in concentration-dependent manner. Meanwhile, IgG prevalence of PkDBPα and PkAMA1 were observed in 13.0 and 46.7% in human clinical patients, respectively. CONCLUSION: These data provide support for the validation of in vitro growth inhibition assay using antibodies of DBPα and AMA1 in human-adapted P. knowlesi parasite PkA1-H.1 strain.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Proteínas de Membrana/imunologia , Plasmodium knowlesi/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Adulto , Idoso , Escherichia coli/genética , Humanos , Microrganismos Geneticamente Modificados/genética , Pessoa de Meia-Idade , Adulto Jovem
5.
Malar J ; 16(1): 333, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806957

RESUMO

BACKGROUND: Emergence of artemisinin-resistant malaria in Southeast Asian countries threatens the global control of malaria. Although K13 kelch propeller has been assessed for artemisinin resistance molecular marker, most of the mutations need to be validated. In this study, artemisinin resistance was assessed by clinical and molecular analysis, including k13 and recently reported markers, pfarps10, pffd and pfmdr2. METHODS: A prospective cohort study in 1160 uncomplicated falciparum patients was conducted after treatment with artemisinin-based combination therapy (ACT), in 6 sentinel sites in Myanmar from 2009 to 2013. Therapeutic efficacy of ACT was assessed by longitudinal follow ups. Molecular markers analysis was done on all available day 0 samples. RESULTS: True recrudescence treatment failures cases and day 3 parasite positivity were detected at only the southern Myanmar sites. Day 3 positive and k13 mutants with higher prevalence of underlying genetic foci predisposing to become k13 mutant were detected only in southern Myanmar since 2009 and comparatively fewer mutations of pfarps10, pffd, and pfmdr2 were observed in western Myanmar. K13 mutations, V127M of pfarps10, D193Y of pffd, and T448I of pfmdr2 were significantly associated with day 3 positivity (OR: 6.48, 3.88, 2.88, and 2.52, respectively). CONCLUSIONS: Apart from k13, pfarps10, pffd and pfmdr2 are also useful for molecular surveillance of artemisinin resistance especially where k13 mutation has not been reported. Appropriate action to eliminate the resistant parasites and surveillance on artemisinin resistance should be strengthened in Myanmar. Trial registration This study was registered with ClinicalTrials.gov, identifier NCT02792816.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Biomarcadores , Mianmar , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...