RESUMO
How to hide messages in digital images so that messages cannot be discovered and tampered with is a compelling topic in the research area of cybersecurity. The interpolation-based reversible data hiding (RDH) scheme is especially useful for the application of medical image management. The biometric information of patients acquired by biosensors is embedded into an interpolated medical image for the purpose of authentication. The proposed scheme classifies pixel blocks into complex and smooth ones according to each block's dynamic range of pixel values. For a complex block, the minimum-neighbor (MN) interpolation followed by DIM embedding is applied, where DIM denotes the difference between the block's interpolated pixel values and the maximum pixel values. For a smooth block, the block mean (BM) interpolation is followed by a prediction error histogram (PEH) embedding and a difference expansion (DE) embedding is applied. Compared with previous methods, this adaptive strategy ensures low distortion due to embedding for smooth blocks while it provides a good payload for complex blocks. Our scheme is suitable for both medical and general images. Experimental results confirm the effectiveness of the proposed scheme. Performance comparisons with state-of-the-art schemes are also given. The peak signal to noise ratio (PSNR) of the proposed scheme is 10.32 dB higher than the relevant works in the best case.
Assuntos
Algoritmos , Segurança Computacional , Humanos , Razão Sinal-Ruído , Biometria , Gestão da InformaçãoRESUMO
Medical images carry a lot of important information for making a medical diagnosis. Since the medical images need to be communicated frequently to allow timely and accurate diagnosis, it has become a target for malicious attacks. Hence, medical images are protected through encryption algorithms. Recently, reversible data hiding on the encrypted images (RDHEI) schemes are employed to embed private information into the medical images. This allows effective and secure communication, wherein the privately embedded information (e.g., medical records and personal information) is very useful to the medical diagnosis. However, existing RDHEI schemes still suffer from low embedding capacity, which limits their applicability. Besides, such solution still lacks a good mechanism to ensure its integrity and traceability. To resolve these issues, a novel approach based on image block-wise encryption and histogram shifting is proposed to provide more embedding capacity in the encrypted images. The embedding rate is over 0.8 bpp for typical medical images. On top of that, a blockchain-based system for RDHEI is proposed to resolve the traceability. The private information is stored on the blockchain together with the hash value of the original medical image. This allows traceability of all the medical images communicated over the proposed blockchain network.
Assuntos
Blockchain , Algoritmos , Registros Eletrônicos de Saúde , HumanosRESUMO
The healthcare sector is currently undergoing a major transformation due to the recent advances in deep learning and artificial intelligence. Despite a significant breakthrough in medical imaging and diagnosis, there are still many open issues and undeveloped applications in the healthcare domain. In particular, transmission of a large volume of medical images proves to be a challenging and time-consuming problem, and yet no prior studies have investigated the use of deep neural networks towards this task. The purpose of this paper is to introduce and develop a deep-learning approach for the efficient transmission of medical images, with a particular interest in the progressive coding of bit-planes. We establish a connection between bit-plane synthesis and image-to-image translation and propose a two-step pipeline for progressive image transmission. First, a bank of generative adversarial networks is trained for predicting bit-planes in a top-down manner, and then prediction residuals are encoded with a tailored adaptive lossless compression algorithm. Experimental results validate the effectiveness of the network bank for generating an accurate low-order bit-plane from high-order bit-planes and demonstrate an advantage of the tailored compression algorithm over conventional arithmetic coding for this special type of prediction residuals in terms of compression ratio.
Assuntos
Inteligência Artificial , Compressão de Dados , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , RadiografiaRESUMO
Secret image sharing is a technique for sharing a secret message in such a fashion that stego image shadows are generated and distributed to individual participants. Without the complete set of shadows shared among all participants, the secret could not be deciphered. This technique may serve as a crucial means for protecting private data in massive Internet of things applications. This can be realized by distributing the stego image shadows to different devices on the Internet so that only the ones who are authorized to access these devices can extract the secret message. In this paper, we proposed a secret image sharing scheme based on a novel maze matrix. A pair of image shadows were produced by hiding secret data into two distinct cover images under the guidance of the maze matrix. A two-layered cheat detection mechanism was devised based on the special characteristics of the proposed maze matrix. In addition to the conventional joint cheating detection, the proposed scheme was able to identify the tampered shadow presented by a cheater without the information from other shadows. Furthermore, in order to improve time efficiency, we derived a pair of Lagrange polynomials to compute the exact pixel values of the shadow images instead of resorting to time-consuming and computationally expensive conventional searching strategies. Experimental results demonstrated the effectiveness and efficiency of the proposed secret sharing scheme and cheat detection mechanism.
RESUMO
The massive Internet of Things (IoT) connecting various types of intelligent sensors for goods tracking in logistics, environmental monitoring and smart grid management is a crucial future ICT. High-end security and low power consumption are major requirements in scaling up the IoT. In this research, we propose an efficient data-hiding scheme to deal with the security problems and power saving issues of multimedia communication among IoT devises. Data hiding is the practice of hiding secret data into cover images in order to conceal and prevent secret data from being intercepted by malicious attackers. One of the established research streams of data-hiding methods is based on reference matrices (RM). In this study, we propose an efficient data-hiding scheme based on multidimensional mini-SuDoKu RM. The proposed RM possesses high complexity and can effectively improve the security of data hiding. In addition, this study also defines a range locator function which can significantly improve the embedding efficiency of multidimensional RM. Experimental results show that our data-hiding scheme can not only obtain better image quality, but also achieve higher embedding capacity than other related schemes.