Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 124(Pt A): 110792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633239

RESUMO

INTRODUCTION: One of the most pressing concerns associated with breast cancer-targeted therapies is resistance to Tamoxifen and Herceptin. Such drug resistance is usually characterized by reduced expression of certain cell surface receptors. Some biological regimens can induce perceptible overexpression of these receptors in favor of drug responsiveness. MATERIAL AND METHODS: In this research, drug-responsive MCF-7 and SKBR-3, along with drug-resistant MCF-7R (Tamoxifen resistant) and JIMT-1 (Herceptin resistant) breast cancer cell lines in 2D and 3D cultures were exposed to anti-MUC1 nanobody and then assessed for their ER, PR, and HER2 gene and protein expression using qRT-PCR and immunofluorescent staining analyses. Cell viability and the synergistic relationships of combination treatments were determined with MTT assay followed by CompuSyn software. Apoptotic cells were evaluated with Annexin V/propidium Iodide (PI) and acridine orange/ethidium bromide (AO/EB) staining. RESULTS: Anti-MUC1 exposure elevated the expression levels of ER (42 folds), PR (18.5 folds), and HER2 (4.7 folds). As a result of co-treatment, the IC50 levels for Tamoxifen and Herceptin were reduced by up to 10 and 3 folds, respectively. MCF-7R cells responded positively to Tamoxifen, as evidenced by a 5-fold reduction in the IC50 and enhanced apoptosis. CONCLUSION: The ER, PR, and HER2 overexpression after MUC1 blocking could signal drug hypersensitization and facilitate drug resistance management.

2.
Cancer Cell Int ; 23(1): 114, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308913

RESUMO

Despite the success of cancer therapy, it has encountered a major obstacle due to the complicated nature of cancer, namely resistance. The recurrence and metastasis of cancer occur when anti-cancer therapeutic agents fail to eradicate all cancer cells. Cancer therapy aims to find the best agent that targets all cancer cells, including those sensitive or resistant to treatment. Flavonoids, natural products from our diet, show anti-cancer effects in different studies. They can inhibit metastasis and the recurrence of cancers. This review discusses metastasis, autophagy, anoikis in cancer cells, and their dynamic relationship. We present evidence that flavonoids can block metastasis and induce cell death in cancer cells. Our research suggests that flavonoids can serve as potential therapeutic agents in cancer therapy.

3.
Cancer Cell Int ; 22(1): 259, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986321

RESUMO

As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.

4.
Cancer Cell Int ; 22(1): 110, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248049

RESUMO

Although resistance is its major obstacle in cancer therapy, trastuzumab is the most successful agent in treating epidermal growth factor receptor 2 positive (HER2 +) breast cancer (BC). Some patients show resistance to trastuzumab, and scientists want to circumvent this problem. This review elaborately discusses possible resistance mechanisms to trastuzumab and introduces mucin 1 (MUC1) as a potential target efficient for overcoming such resistance. MUC1 belongs to the mucin family, playing the oncogenic/mitogenic roles in cancer cells and interacting with several other oncogenic receptors and pathways, such as HER2, ß-catenin, NF-κB, and estrogen receptor (ERα). Besides, it has been established that MUC1- Cytoplasmic Domain (MUC1-CD) accelerates the development of resistance to trastuzumab and that silencing MUC1-C proto-oncogene is associated with increased sensitivity of HER2+ cells to trastuzumab-induced growth inhibitors. We mention why targeting MUC1 can be useful in overcoming trastuzumab resistance in cancer therapy.

5.
Cancer Cell Int ; 22(1): 14, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000604

RESUMO

Mucin-1 (MUC-1) is a transmembrane glycoprotein, which bears many similarities between dogs and humans. Since the existence of animal models is essential to understand the significant factors involved in breast cancer mechanisms, canine mammary tumors (CMTs) could be used as a spontaneously occurring tumor model for human studies. Accordingly, this review assessed the comparison of canine and human MUC-1 based on their diagnostic and therapeutic aspects and showed how comparative oncology approaches could provide insights into translating pre-clinical trials from human to veterinary oncology and vice versa which could benefit both humans and dogs.

6.
Int Immunopharmacol ; 98: 107886, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153663

RESUMO

The crucial role of the immune system in the progression/regression of breast cancer (BC) should always be taken into account. Various immunotherapy approaches have been investigated for BC, including tumor-targeting antibodies (bispecific antibodies), adoptive T cell therapy, vaccines, and immune checkpoint blockade such as anti-PD-1. In addition, a combination of conventional chemotherapy and immunotherapy approaches contributes to improving patients' overall survival rates. Although encouraging outcomes have been reported in most clinical trials of immunotherapy, some obstacles should still be resolved in this regard. Recently, personalized immunotherapy has been proposed as a potential complementary medicine with immunotherapy and chemotherapy for overcoming BC. Accordingly, this review discusses the brief association of these methods and future directions in BC immunotherapy.


Assuntos
Neoplasias da Mama/terapia , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Mastectomia , Terapia Neoadjuvante/métodos , Antígenos de Neoplasias/metabolismo , Mama/imunologia , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Feminino , Humanos , Imunoterapia/tendências , Terapia Neoadjuvante/tendências , Taxa de Sobrevida , Resultado do Tratamento
7.
Int Immunopharmacol ; 84: 106535, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361569

RESUMO

During the past recent years, various therapies emerged in the era of breast cancer. Breast cancer is a heterogeneous disease in which genetic and environmental factors are involved. Breast cancer stem cells (BCSCs) are the main player in the aggressiveness of different tumors and also, these cells are the main challenge in cancer treatment. Moreover, the major obstacle to achieve an effective treatment is resistance to therapies. There are various types of treatment for breast cancer (BC) patients. Therefore, in this review, we present the current treatments, novel approaches such as antibody-drug conjugation systems (ADCs), nanoparticles (albumin-, metal-, lipid-, polymer-, micelle-based nanoparticles), and BCSCs-based therapies. Furthermore, prognostic and predictive biomarkers will be discussed also biomarkers that have been applied by some tests such as Oncotype DX, Mamm αPrint, and uPA/PAI-1 are regarded as suitable prognostic and predictive factors in breast cancer.


Assuntos
Neoplasias da Mama , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...